Do you want to publish a course? Click here

Gravitational-wave Signals From Three-dimensional Supernova Simulations With Different Neutrino-Transport Methods

65   0   0.0 ( 0 )
 Added by Haakon Andresen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare gravitational-wave (GW) signals from eight three-dimensional simulations of core-collapse supernovae, using two different progenitors with zero-age main sequence masses of 9 and 20 solar masses. The collapse of each progenitor was simulated four times, at two different grid resolutions and with two different neutrino transport methods, using the Aenus-Alcar code. The main goal of this study is to assess the validity of recent concerns that the so-called Ray-by-Ray+ (RbR+) approximation is problematic in core-collapse simulations and can adversely affect theoretical GW predictions. Therefore, signals from simulations using RbR+ are compared to signals from corresponding simulations using a fully multidimensional (FMD) transport scheme. The 9 solar-mass progenitor successfully explodes, whereas the 20 solar-mass model does not. Both the standing accretion shock instability and hot-bubble convection develop in the postshock layer of the non-exploding models. In the exploding models, neutrino-driven convection in the postshock flow is established around 100 ms after core bounce and lasts until the onset of shock revival. We can, therefore, judge the impact of the numerical resolution and neutrino transport under all conditions typically seen in non-rotating core-collapse simulations. We find excellent qualitative agreement in all GW features. We find minor quantitative differences between simulations, but find no systematic differences between simulations using different transport schemes. Resolution-dependent differences in the hydrodynamic behaviour of low-resolution and high-resolution models have a greater impact on the GW signals than consequences of the different transport methods. Furthermore, increasing the resolution decreases the discrepancies between models with different neutrino transport.



rate research

Read More

In this work we report briefly on the gravitational wave (GW) signal computed in the context of a self-consistent, 3D simulation of a core-collapse supernova (CCSN) explosion of a 15M$_odot$ progenitor star. We present a short overview of the GW signal, including signal amplitude, frequency distribution, and the energy emitted in the form of GWs for each phase of explosion, along with neutrino luminosities, and discuss correlations between them.
We present gravitational wave (GW) signal predictions from four 3D multi-group neutrino hydrodynamics simulations of core-collapse supernovae of progenitors with 11.2 Msun, 20 Msun, and 27 Msun. GW emission in the pre-explosion phase strongly depends on whether the post-shock flow is dominated by the standing accretion shock instability (SASI) or convection and differs considerably from 2D models. SASI activity produces a strong signal component below 250 Hz through asymmetric mass motions in the gain layer and a non-resonant coupling to the proto-neutron star (PNS). Both convection- and SASI-dominated models show GW emission above 250 Hz, but with considerably lower amplitudes than in 2D. This is due to a different excitation mechanism for high-frequency l=2 motions in the PNS surface, which are predominantly excited by PNS convection in 3D. Resonant excitation of high-frequency surface g-modes in 3D by mass motions in the gain layer is suppressed compared to 2D because of smaller downflow velocities and a lack of high-frequency variability in the downflows. In the exploding 20 Msun model, shock revival results in enhanced low-frequency emission due to a change of the preferred scale of the convective eddies in the PNS convection zone. Estimates of the expected excess power in two frequency bands suggests that second-generation detectors will only be able to detect very nearby events, but that third-generation detectors could distinguish SASI- and convection-dominated models at distances of ~10 kpc.
79 - Rylan Jardine 2021
We investigate the impact of rotation and magnetic fields on the dynamics and gravitational wave emission in 2D core-collapse supernova simulations with neutrino transport. We simulate 16 different models of $15,M_odot$ and $39,M_odot$ progenitor stars with various initial rotation profiles and initial magnetic fields strengths up to $10^{12}, mathrm{G}$, assuming a dipolar field geometry in the progenitor. Strong magnetic fields generally prove conducive to shock revival, though this trend is not without exceptions. The impact of rotation on the post-bounce dynamics is more variegated, in line with previous studies. A significant impact on the time-frequency structure of the gravitational wave signal is found only for rapid rotation or strong initial fields. For rapid rotation, the angular momentum gradient at the proto-neutron star surface can appreciably affect the frequency of the dominant mode, so that known analytic relations for the high-frequency emission band no longer hold. In case of two magnetorotational explosion models, the time-frequency structure of the post-bounce emission appears rather different from neutrino-driven explosions. In one of these two models, a new high-frequency emission component of significant amplitude emerges about $200, mathrm{ms}$ after the burst of gravitational wave emission around shock revival has subsided. This emission is characterised by broad-band power well into the kHz range. Its emission mechanism remains unclear and needs to be investigated further. We also estimate the maximum detection distances for our waveforms. The magnetorotational models do not stick out for higher detectability during the post-bounce and explosion phase.
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
We present results from full general relativistic three-dimensional hydrodynamics simulations of stellar core collapse of a 70 M$_odot$ star with spectral neutrino transport. To investigate the impact of rotation on non-axisymmetric instabilities, we compute three models by parametrically changing the initial strength of rotation. The most rapidly rotating model exhibits a transient development of the low-$T/|W|$ instability with one-armed spiral flow at the early postbounce phase. Subsequently, the two-armed spiral flow appears, which persists during the simulation time. The moderately rotating model also shows the growth of the low-$T/|W|$ instability, but only with the two-armed spiral flow. In the nonrotating model, a vigorous activity of the standing accretion-shock instability (SASI) is only observed. The SASI is first dominated by the sloshing mode, which is followed by the spiral SASI until the black hole formation. We present a spectrogram analysis of the gravitational waves (GWs) and neutrinos, focusing on the time correlation. Our results show that characteristic time modulations in the GW and neutrino signals can be linked to the growth of the non-axisymmetric instabilities. We find that the degree of the protoneutron star (PNS) deformation, depending upon which modes of the non-axisymmetric instabilities develop, predominantly affects the characteristic frequencies of the correlated GW and neutrino signals. We point out that these signals would be simultaneously detectable by the current-generation detectors up to $sim10$ kpc. Our findings suggest that the joint observation of GWs and neutrinos is indispensable for extracting information on the PNS evolution preceding the black hole formation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا