No Arabic abstract
Topological insulators (TIs) hold great promises for new spin-related phenomena and applications thanks to the spin texture of their surface states. However, a versatile platform allowing for the exploitation of these assets is still lacking due to the difficult integration of these materials with the mainstream Si-based technology. Here, we exploit germanium as a substrate for the growth of Bi$_2$Se$_3$, a prototypical TI. We probe the spin properties of the Bi$_2$Se$_3$/Ge pristine interface by investigating the spin-to-charge conversion taking place in the interface states by means of a non-local detection method. The spin population is generated by optical orientation in Ge, and diffuses towards the Bi$_2$Se$_3$ which acts as a spin detector. We compare the spin-to-charge conversion in Bi$_2$Se$_3$/Ge with the one taking place in Pt in the same experimental conditions. Notably, the sign of the spin-to-charge conversion given by the TI detector is reversed compared to the Pt one, while the efficiency is comparable. By exploiting first-principles calculations, we ascribe the sign reversal to the hybridization of the topological surface states of Bi$_2$Se$_3$ with the Ge bands. These results pave the way for the implementation of highly efficient spin detection in TI-based architectures compatible with semiconductor-based platforms.
An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X-ray absorption magnetic circular dichroism (XMCD). The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ state in the YIG film were confirmed. The proximity effect is likely described in terms of the exchange interaction between the localized Fe 3d electrons in the YIG film and delocalized electrons of the surface and bulk states in the Bi2Se3 film. The Curie temperature (TC) may be increased by reducing the amount of the interface Fe2+ ions with opposite spin direction observable as a pre-edge in the XMCD spectra.
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection occurs and the spin rotation angle jumps by $pi$. We discuss the origin of this phenomena, and systematically study the dependence of spin-flip and spin-conserving scattering amplitudes on the interface transparency and metal Fermi surface parameters. The interface spectrum contains a well-defined Dirac cone in the tunneling limit, and smoothly evolves into a continuum of metal induced gap states for good contacts. We also investigate the complex band structure of Bi$_2$Se$_3$.
We analyze the evidence of Majorana zero modes in nanowires that came from tunneling spectroscopy and other experiments, and scout the path to topologically protected states that are of interest for quantum computing. We illustrate the importance of the superconductor-semiconductor interface quality and sketch out where further progress in materials science of these interfaces can take us. Finally, we discuss the prospects of observing more exotic non-Abelian anyons based on the same materials platform, and how to make connections to high energy physics.
Topological insulators (TIs) are characterized by an insulating bulk and symmetry protected bound state on their boundaries. A strong topological insulator is characterized by robust conducting states on emph{all} boundaries protected by certain internal symmetries. A weak topological insulator (WTI) however, requires lattice translation symmetry, making it more sensitive to disorder. However, this sensitivity gives rise to interesting characteristics such as anisotropic edge modes, quantized charge polarization, and bound states appearing at dislocation defects. Despite hosting interesting features, the sensitivity of WTIs to disorder poses an experimental confirmation challenge. Here we realize a 2D magneto-mechanical metamaterial and demonstrate experimentally the unique features of a WTI. Specifically, we show that the 2D WTI is anisotropic and hosts edge modes only on certain edges, as well as hosting a bound state at a dislocation defect. We construct the 2D WTI from stacked 1D SSH chains for which we show experimentally the different gapped phases of the 1D model.
We report on the magnetotransport properties of a prototype Mott insulator/band insulator perovskite heterojunction in magnetic fields up to 31 T and at temperatures between 360 mK and 10 K. Shubnikov-de Haas oscillations in the magnetoresistance are observed. The oscillations are two-dimensional in nature and are interpreted as arising from either a single, spin-split subband or two subbands. In either case, the electron system that gives rise to the oscillations represents only a fraction of the electrons in the space charge layer at the interface. The temperature dependence of the oscillations are used to extract an effective mass of ~ 1 me for the subband(s). The results are discussed in the context of the t2g-states that form the bottom of the conduction band of SrTiO3.