No Arabic abstract
We compute the expectation value of the energy-momentum tensor in the in-vacuum state of the quantized Dirac field coupled to a uniform electric field background on the Poincar$rmacute{e}$ path of the two dimensional de~Sitter spacetime ($mathrm{dS}_{2}$). The adiabatic regularization scheme is applied to remove the ultraviolet divergencies from the expressions. We find, the off-diagonal components of the induced energy-momentum tensor vanishes and the absolute values of the diagonal components are increasing functions of the electric field which decrease as the Dirac field mass increases. We derive the trace anomaly of the induced energy-momentum tensor, which agrees precisely with the trace anomaly derived earlier in the literature. We have discusses the backreaction of the induced energy-momentum tensor on the gravitational field.
We have studied the induced one-loop energy-momentum tensor of a massive complex scalar field within the framework of nonperturbative quantum electrodynamics (QED) with a uniform electric field background on the Poincare patch of the two-dimensional de Sitter spacetime ($mathrm{dS_{2}}$). We also consider a direct coupling the scalar field to the Ricci scalar curvature which is parameterized by an arbitrary dimensionless nonminimal coupling constant. We evaluate the trace anomaly of the induced energy-momentum tensor. We show that our results for the induced energy-momentum tensor in the zero electric field case, and the trace anomaly are in agreement with the existing literature. Furthermore, we construct the one-loop effective Lagrangian from the induced energy-momentum tensor.
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an Inonu-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups.
In this paper we present a covariant quantization of the ``massive spin-2 field on de Sitter (dS) space. By ``massive we mean a field which carries a specific principal series representation of the dS group. The work is in the direct continuation of previous ones concerning the scalar, the spinor and the vector cases. The quantization procedure, independent of the choice of the coordinate system, is based on the Wightman-Garding axiomatic and on analyticity requirements for the two-point function in the complexified pseudo-Riemanian manifold. Such a construction is necessary in view of preparing and comparing with the dS conformal spin-2 massless case (dS linear quantum gravity) which will be considered in a forthcoming paper and for which specific quantization methods are needed.
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrised in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.
Inertial observers in de Sitter are surrounded by a horizon and see thermal fluctuations. To them, a massless scalar field appears to follow a random motion but any attractive potential, no matter how weak, will eventually stabilize the field. We study this thermalization process in the static patch (the spacetime region accessible to an individual observer) via a truncation to the low frequency spectrum. We focus on the distribution of the field averaged over a subhorizon region. At timescales much longer than the inverse temperature and to leading order in the coupling, we find the evolution to be Markovian, governed by the same Fokker-Planck equation that arises when the theory is studied in the inflationary setup.