No Arabic abstract
In this paper we present a covariant quantization of the ``massive spin-2 field on de Sitter (dS) space. By ``massive we mean a field which carries a specific principal series representation of the dS group. The work is in the direct continuation of previous ones concerning the scalar, the spinor and the vector cases. The quantization procedure, independent of the choice of the coordinate system, is based on the Wightman-Garding axiomatic and on analyticity requirements for the two-point function in the complexified pseudo-Riemanian manifold. Such a construction is necessary in view of preparing and comparing with the dS conformal spin-2 massless case (dS linear quantum gravity) which will be considered in a forthcoming paper and for which specific quantization methods are needed.
Maldacena has shown that the wavefunction of the universe in de Sitter space can be viewed as the partition function of a conformal field theory. In this paper, we investigate this approach to the dS/CFT correspondence in further detail. We emphasize that massive bulk fields are dual to two primary operators on the boundary, which encode information about the two independent behaviors of bulk expectation values at late times. An operator statement of the duality is given, and it is shown that the resulting boundary correlators can be interpreted as transition amplitudes from the Bunch-Davies vacuum to an excited state in the infinite future. We also explain how these scattering amplitudes can be used to compute late-time Bunch-Davies expectation values, and comment on the effects of anomalies in the dual CFT on such expectation values.
We obtain numerical solutions for rotating topological solitons of the nonlinear $sigma$-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The $sigma$-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. Any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities. On the other hand, the space-time domain, along with the fields, for the type $ii)$ solutions are singularity free. Multiple families of solutions exhibiting bifurcation phenomena are found for this case.
We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we show how to obtain the quadratic actions for the propagating modes and recast the resulting equations of motion in a Schrodinger-like form. In the case of partially massless fields in Schwarzschild de Sitter spacetime, we study the isospectrality between modes of different parity. In particular, we prove isospectrality analytically for modes with multipole number $L=1$ in four spacetime dimensions, providing the explicit form of the underlying symmetry. We show that isospectrality between partially massless modes of different parity is broken in higher-dimensional Schwarzschild de Sitter spacetimes.
We demonstrate that possession of a single negative mode is not a sufficient criterion for an instanton to mediate exponential decay. For example, de Sitter space is generically stable against decay via the Coleman-De Luccia instanton. This is due to the fact that the de Sitter Euclidean action is bounded below, allowing for an approximately de Sitter invariant false vacuum to be constructed.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat space to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.