Given a locally convex vector space with a topology induced by Hilbert seminorms and a continuous bilinear form on it we construct a topology on its symmetric algebra such that the usual star product of exponential type becomes continuous. Many properties of the resulting locally convex algebra are explained. We compare this approach to various other discussions of convergent star products in finite and infinite dimensions. We pay special attention to the case of a Hilbert space and to nuclear spaces.
We provide axioms that guarantee a category is equivalent to that of continuous linear functions between Hilbert spaces. The axioms are purely categorical and do not presuppose any analytical structure. This addresses a question about the mathematical foundations of quantum theory raised in reconstruction programmes such as those of von Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.
We present a brief review of discrete structures in a finite Hilbert space, relevant for the theory of quantum information. Unitary operator bases, mutually unbiased bases, Clifford group and stabilizer states, discrete Wigner function, symmetric informationally complete measurements, projective and unitary t--designs are discussed. Some recent results in the field are covered and several important open questions are formulated. We advocate a geometric approach to the subject and emphasize numerous links to various mathematical problems.
One way of interpreting a left Kan extension is as taking a kind of partial colimit, whereby one replaces parts of a diagram by their colimits. We make this intuition precise by means of the partial evaluations sitting in the so-called bar construction of monads. The (pseudo)monads of interest for forming colimits are the monad of diagrams and the monad of small presheaves, both on the (huge) category CAT of locally small categories. Throughout, particular care is taken to handle size issues, which are notoriously delicate in the context of free cocompletion. We spell out, with all 2-dimensional details, the structure maps of these pseudomonads. Then, based on a detailed general proof of how the restriction-of-scalars construction of monads extends to the case of pseudoalgebras over pseudomonads, we define a morphism of monads between them, which we call image. This morphism allows us in particular to generalize the idea of confinal functors i.e. of functors which leave colimits invariant in an absolute way. This generalization includes the concept of absolute colimit as a special case. The main result of this paper spells out how a pointwise left Kan extension of a diagram corresponds precisely to a partial evaluation of its colimit. This categorical result is analogous to what happens in the case of probability monads, where a conditional expectation of a random variable corresponds to a partial evaluation of its center of mass.
We give a characterization for the extreme points of the convex set of correlation matrices with a countable index set. A Hermitian matrix is called a correlation matrix if it is positive semidefinite with unit diagonal entries. Using the characterization we show that there exist extreme points of any rank.