Do you want to publish a course? Click here

On discrete structures in finite Hilbert spaces

200   0   0.0 ( 0 )
 Added by Karol Zyczkowski
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a brief review of discrete structures in a finite Hilbert space, relevant for the theory of quantum information. Unitary operator bases, mutually unbiased bases, Clifford group and stabilizer states, discrete Wigner function, symmetric informationally complete measurements, projective and unitary t--designs are discussed. Some recent results in the field are covered and several important open questions are formulated. We advocate a geometric approach to the subject and emphasize numerous links to various mathematical problems.



rate research

Read More

154 - Y. B. Band , Pier A. Mello 2016
We first show that partial transposition for pure and mixed two-particle states in a discrete $N$-dimensional Hilbert space is equivalent to a change in sign of the momentum of one of the particles in the Wigner function for the state. We then show that it is possible to formulate an uncertainty relation for two-particle Hermitian operators constructed in terms of Schwinger operators, and study its role in detecting entanglement in a two-particle state: the violation of the uncertainty relation for a partially transposed state implies that the original state is entangled. This generalizes a result obtained for continuous-variable systems to the discrete-variable-system case. This is significant because testing entanglement in terms of an uncertainty relation has a physically appealing interpretation. We study the case of a Werner state, which is a mixed state constructed as a convex combination with a parameter $r$ of a Bell state $|Phi^{+} rangle$ and the completely incoherent state, $hat{rho}_r = r |Phi^{+} rangle langle Phi^{+}| + (1-r)frac{hat{mathbb{I}}}{N^2}$: we find that for $r_0 < r < 1$, where $r_0$ is obtained as a function of the dimensionality $N$, the uncertainty relation for the partially transposed Werner state is violated and the original Werner state is entangled.
We study the Weyl-Wigner transform in the case of discrete variables defined in a Hilbert space of finite prime-number dimensionality $N$. We define a family of Weyl-Wigner transforms as function of a phase parameter. We show that it is only for a specific value of the parameter that all the properties we have examined have a parallel with the case of continuous variables defined in an infinite-dimensional Hilbert space. A geometrical interpretation is briefly discussed.
We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregion and its entanglement wedge. Assuming that the infinite-dimensional von Neumann algebras associated with an entanglement wedge and its complement may both be reconstructed in their corresponding boundary subregions, we prove that the relative entropies measured with respect to the bulk and boundary observables are equal. We also prove the converse: when the relative entropies measured in an entanglement wedge and its complement equal the relative entropies measured in their respective boundary subregions, entanglement wedge reconstruction is possible. Along the way, we show that the bulk and boundary modular operators act on the code subspace in the same way. For holographic theories with a well-defined entanglement wedge, this result provides a well-defined notion of holographic relative entropy.
In this article we study standard subspaces of Hilbert spaces of vector-valued holomorphic functions on tube domains E + i C^0, where C subeq E is a pointed generating cone invariant under e^{R h} for some endomorphism h in End(E), diagonalizable with the eigenvalues 1,0,-1 (generalizing a Lorentz boost). This data specifies a wedge domain W(E,C,h) subeq E and one of our main results exhibits corresponding standard subspaces as being generated using test functions on these domains. We also investigate aspects of reflection positivity for the triple (E,C,e^{pi i h}) and the support properties of distributions on E, arising as Fourier transforms of operator-valued measures defining the Hilbert spaces H. For the imaginary part of these distributions, we find similarities to the well known Huygens principle, relating to wedge duality in the Minkowski context. Interesting examples are the Riesz distributions associated to euclidean Jordan algebras.
The category of Hilbert spaces and contractions has filtered colimits, and tensoring preserves them. We also discuss (problems with) bounded maps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا