Do you want to publish a course? Click here

Kan extensions are partial colimits

141   0   0.0 ( 0 )
 Added by Paolo Perrone
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

One way of interpreting a left Kan extension is as taking a kind of partial colimit, whereby one replaces parts of a diagram by their colimits. We make this intuition precise by means of the partial evaluations sitting in the so-called bar construction of monads. The (pseudo)monads of interest for forming colimits are the monad of diagrams and the monad of small presheaves, both on the (huge) category CAT of locally small categories. Throughout, particular care is taken to handle size issues, which are notoriously delicate in the context of free cocompletion. We spell out, with all 2-dimensional details, the structure maps of these pseudomonads. Then, based on a detailed general proof of how the restriction-of-scalars construction of monads extends to the case of pseudoalgebras over pseudomonads, we define a morphism of monads between them, which we call image. This morphism allows us in particular to generalize the idea of confinal functors i.e. of functors which leave colimits invariant in an absolute way. This generalization includes the concept of absolute colimit as a special case. The main result of this paper spells out how a pointwise left Kan extension of a diagram corresponds precisely to a partial evaluation of its colimit. This categorical result is analogous to what happens in the case of probability monads, where a conditional expectation of a random variable corresponds to a partial evaluation of its center of mass.



rate research

Read More

In this mainly expository note, we state a criterion for when a left Kan extension of a lax monoidal functor along a strong monoidal functor can itself be equipped with a lax monoidal structure, in a way that results in a left Kan extension in MonCat. This belongs to the general theory of algebraic Kan extensions, as developed by Melli`es-Tabareau, Koudenburg and Weber, and is very close to an instance of a theorem of Koudenburg. We find this special case particularly important due to its connections with the theory of graded monads.
The category of Hilbert spaces and contractions has filtered colimits, and tensoring preserves them. We also discuss (problems with) bounded maps.
Properties of preordered monoids are investigated and important subclasses of such structures are studied. The corresponding full subcategories of the category of preordered monoids are functorially related between them as well as with the categories of preordered sets and monoids. Schreier split extensions are described in the full subcategory of preordered monoids whose preorder is determined by the corresponding positive cone.
In this paper, first we classify non-abelian extensions of Leibniz algebras by the second non-abelian cohomology. Then, we construct Leibniz 2-algebras using derivations of Leibniz algebras, and show that under a condition on the center, a non-abelian extension of Leibniz algebras can be described by a Leibniz 2-algebra morphism. At last, we give a description of non-abelian extensions in terms of Maurer-Cartan elements in a differential graded Lie algebra.
Monads can be interpreted as encoding formal expressions, or formal operations in the sense of universal algebra. We give a construction which formalizes the idea of evaluating an expression partially: for example, 2+3 can be obtained as a partial evaluation of 2+2+1. This construction can be given for any monad, and it is linked to the famous bar construction, of which it gives an operational interpretation: the bar construction induces a simplicial set, and its 1-cells are partial evaluations. We study the properties of partial evaluations for general monads. We prove that whenever the monad is weakly cartesian, partial evaluations can be composed via the usual Kan filler property of simplicial sets, of which we give an interpretation in terms of substitution of terms. In terms of rewritings, partial evaluations give an abstract reduction system which is reflexive, confluent, and transitive whenever the monad is weakly cartesian. For the case of probability monads, partial evaluations correspond to what probabilists call conditional expectation of random variables. This manuscript is part of a work in progress on a general rewriting interpretation of the bar construction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا