Do you want to publish a course? Click here

Timed Context-Free Temporal Logics

102   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL). The logic EC_NTL is an extension of both the logic CaRet (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of EC_NTL and visibly model-checking of Visibly Pushdown Timed Automata (VPTA) against EC_NTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to EC_NTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.



rate research

Read More

The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (ECNTL) and Nested Metric Temporal Logic (NMTL). The logic ECNTL is an extension of both the logic CARET (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of ECNTL and visibly model-checking of Visibly Pushdown Timed Automata VPTA against ECNTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to ECNTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.
In temporal logics, a central question is about the choice of modalities and their relative expressive power, in comparison to the complexity of decision problems such as satisfiability. In this tutorial, we will illustrate the study of such questions over finite word models, first with logics for Unambiguous Starfree Regular Languages (UL), originally defined by Schutzenberger, and then for extensions with constraints, which appear in interval logics. We present Deterministic temporal logics, with diverse sets of modalities, which also characterize UL. The tools and techniques used go under the name of Turtle Programs or Rankers. These are simple kinds of automata. We use properties such as Ranker Directionality and Ranker Convexity to show that all these logics have NP satisfiability. A recursive extension of some of these modalities gives us the full power of first-order logic over finite linear orders. We also discuss Interval Constraint modalities extending Deterministic temporal logics, with intermediate expressiveness. These allow counting or simple algebraic operations on paths. The complexity of these extended logics is PSpace, as of full temporal logic (and ExpSpace when using binary notation).
The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.
225 - Rajeev Alur 2011
Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a within modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.
243 - Olivier Finkel 2013
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter Buchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter Buchi automaton A and a Buchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا