Do you want to publish a course? Click here

First-Order and Temporal Logics for Nested Words

233   0   0.0 ( 0 )
 Added by Rajeev Alur
 Publication date 2011
and research's language is English
 Authors Rajeev Alur




Ask ChatGPT about the research

Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a within modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.



rate research

Read More

184 - Florent Bouchy 2008
We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.
Two-way regular path queries (2RPQs) have received increased attention recently due to their ability to relate pairs of objects by flexibly navigating graph-structured data. They are present in property paths in SPARQL 1.1, the new standard RDF query language, and in the XML query language XPath. In line with XPath, we consider the extension of 2RPQs with nesting, which allows one to require that objects along a path satisfy complex conditions, in turn expressed through (nested) 2RPQs. We study the computational complexity of answering nested 2RPQs and conjunctions thereof (CN2RPQs) in the presence of domain knowledge expressed in description logics (DLs). We establish tight complexity bounds in data and combined complexity for a variety of DLs, ranging from lightweight DLs (DL-Lite, EL) up to highly expressive ones. Interestingly, we are able to show that adding nesting to (C)2RPQs does not affect worst-case data complexity of query answering for any of the considered DLs. However, in the case of lightweight DLs, adding nesting to 2RPQs leads to a surprising jump in combined complexity, from P-complete to Exp-complete.
In temporal logics, a central question is about the choice of modalities and their relative expressive power, in comparison to the complexity of decision problems such as satisfiability. In this tutorial, we will illustrate the study of such questions over finite word models, first with logics for Unambiguous Starfree Regular Languages (UL), originally defined by Schutzenberger, and then for extensions with constraints, which appear in interval logics. We present Deterministic temporal logics, with diverse sets of modalities, which also characterize UL. The tools and techniques used go under the name of Turtle Programs or Rankers. These are simple kinds of automata. We use properties such as Ranker Directionality and Ranker Convexity to show that all these logics have NP satisfiability. A recursive extension of some of these modalities gives us the full power of first-order logic over finite linear orders. We also discuss Interval Constraint modalities extending Deterministic temporal logics, with intermediate expressiveness. These allow counting or simple algebraic operations on paths. The complexity of these extended logics is PSpace, as of full temporal logic (and ExpSpace when using binary notation).
101 - Laura Bozzelli 2018
The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL). The logic EC_NTL is an extension of both the logic CaRet (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of EC_NTL and visibly model-checking of Visibly Pushdown Timed Automata (VPTA) against EC_NTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to EC_NTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.
We show that the techniques for resource control that have been developed in the so-called light logics can be fruitfully applied also to process algebras. In particular, we present a restriction of Higher-Order pi-calculus inspired by Soft Linear Logic. We prove that any soft process terminates in polynomial time. We argue that the class of soft processes may be naturally enlarged so that interesting processes are expressible, still maintaining the polynomial bound on executions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا