Do you want to publish a course? Click here

Timed context-free temporal logics (extended version)

119   0   0.0 ( 0 )
 Added by Adriano Peron
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (ECNTL) and Nested Metric Temporal Logic (NMTL). The logic ECNTL is an extension of both the logic CARET (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of ECNTL and visibly model-checking of Visibly Pushdown Timed Automata VPTA against ECNTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to ECNTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.



rate research

Read More

101 - Laura Bozzelli 2018
The paper is focused on temporal logics for the description of the behaviour of real-time pushdown reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately dense-time real-time properties and context-free properties by ensuring decidability and tractability in the combined setting. To this end we introduce two real-time linear temporal logics for specifying quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC_NTL) and Nested Metric Temporal Logic (NMTL). The logic EC_NTL is an extension of both the logic CaRet (a context-free extension of standard LTL) and Event-Clock Temporal Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We prove that satisfiability of EC_NTL and visibly model-checking of Visibly Pushdown Timed Automata (VPTA) against EC_NTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability of future MTL is undecidable when interpreted over infinite timed words but decidable over finite timed words. On the other hand, we show that by augmenting future MTL with future context-free temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words. On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is expressively equivalent to EC_NTL and for which satisfiability and visibly model-checking of VPTA are EXPTIME-complete.
The Shapes Constraint Language (SHACL) allows for formalizing constraints over RDF data graphs. A shape groups a set of constraints that may be fulfilled by nodes in the RDF graph. We investigate the problem of containment between SHACL shapes. One shape is contained in a second shape if every graph node meeting the constraints of the first shape also meets the constraints of the second. To decide shape containment, we map SHACL shape graphs into description logic axioms such that shape containment can be answered by description logic reasoning. We identify several, increasingly tight syntactic restrictions of SHACL for which this approach becomes sound and complete.
In temporal logics, a central question is about the choice of modalities and their relative expressive power, in comparison to the complexity of decision problems such as satisfiability. In this tutorial, we will illustrate the study of such questions over finite word models, first with logics for Unambiguous Starfree Regular Languages (UL), originally defined by Schutzenberger, and then for extensions with constraints, which appear in interval logics. We present Deterministic temporal logics, with diverse sets of modalities, which also characterize UL. The tools and techniques used go under the name of Turtle Programs or Rankers. These are simple kinds of automata. We use properties such as Ranker Directionality and Ranker Convexity to show that all these logics have NP satisfiability. A recursive extension of some of these modalities gives us the full power of first-order logic over finite linear orders. We also discuss Interval Constraint modalities extending Deterministic temporal logics, with intermediate expressiveness. These allow counting or simple algebraic operations on paths. The complexity of these extended logics is PSpace, as of full temporal logic (and ExpSpace when using binary notation).
Several real-world libraries (e.g., reentrant locks, GUI frameworks, serialization libraries) require their clients to use the provided API in a manner that conforms to a context-free specification. Motivated by this observation, this paper describes a new technique for verifying the correct usage of context-free API protocols. The key idea underlying our technique is to over-approximate the programs feasible API call sequences using a context-free grammar (CFG) and then check language inclusion between this grammar and the specification. However, since this inclusion check may fail due to imprecision in the programs CFG abstraction, we propose a novel refinement technique to progressively improve the CFG. In particular, our method obtains counterexamples from CFG inclusion queries and uses them to introduce new non-terminals and productions to the grammar while still over-approximating the programs relevant behavior. We have implemented the proposed algorithm in a tool called CFPChecker and evaluate it on 10 popular Java applications that use at least one API with a context-free specification. Our evaluation shows that CFPChecker is able to verify correct usage of the API in clients that use it correctly and produces counterexamples for those that do not. We also compare our method against three relevant baselines and demonstrate that CFPChecker enables verification of safety properties that are beyond the reach of existing tools.
The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا