Do you want to publish a course? Click here

A path-integral formulation of the run and tumble motion and chemotaxis in Escherichia coli

110   0   0.0 ( 0 )
 Added by Ushasi Roy
 Publication date 2018
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.



rate research

Read More

Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.
124 - E. Almaas , B. Kovacs , T. Vicsek 2004
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolisms activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.
134 - Pablo Sartori , Yuhai Tu 2011
Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high frequency noise is filtered by the output degradation process through time-averaging; while the low frequency noise is damped by adaptation through negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found to be unfiltered and can thus amount to a significant internal noise floor even without signaling. These results are applied to E. coli chemotaxis. We show unambiguously that the molecular mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response regulator CheY-P, not the receptor adaptation process as previously suggested. The high frequency noise due to the stochastic ligand binding-unbinding events and the random ligand molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in E.coli. We identify a previously unstudied noise source caused by the random motion of the cell in a ligand gradient. We show that this random walk induced signal noise has a divergent low frequency component, which is only rendered finite by the receptor adaptation process. For gradients within the E. coli sensing range, this dominant external noise can be comparable to the significant intrinsic noise in the system. The dependence of the response and its fluctuations on the key time scales of the system are studied systematically. We show that the chemotaxis pathway may have evolved to optimize gradient sensing, strong response, and noise control in different time scales
In this paper we develop a field-theoretic description for run and tumble chemotaxis, based on a density functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multi-particle interactions, soft-core repulsion and elasticity is ideal for describing continuum collective phases with particle resolution, but on diffusive timescales. We show that our model exhibits particle aggregation in an externally imposed constant attractant field, as is observed for phototactic or thermotactic agents. We also show that this model captures particle aggregation through self-chemotaxis, an important mechanism that aids quorum dependent cellular interactions.
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their mobility characteristics using time-lapse imaging. We perform a detailed statistical analysis of their speed, survival, directionality, distance travelled and diffusivity. We confirm that single and pairs of cells migrate as a diffusive random walk. Moreover, we show that the presence of Cell Tracer significantly reduces hESC mobility. Our results open the path to employ the theoretical framework of the diffusive random walk for the prognostic modelling and optimisation of the growth of hESC colonies. Indeed, we employ this random walk model to estimate the seeding density required to minimise the occurrence of hESC colonies arising from more than one founder cell and the minimal cell number needed for successful colony formation. We believe that our prognostic model can be extended to investigate the kinematic behaviour of somatic cells emerging from hESC differentiation and to enable its wide application in phenotyping of pluripotent stem cells for large scale stem cell culture expansion and differentiation platforms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا