Do you want to publish a course? Click here

A Message Passing Approach for Multiple Maneuvering Target Tracking

66   0   0.0 ( 0 )
 Added by Zengfu Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper considers the problem of detecting and tracking multiple maneuvering targets, which suffers from the intractable inference of high-dimensional latent variables that include target kinematic state, target visibility state, motion mode-model association, and data association. A unified message passing algorithm that combines belief propagation (BP) and mean-field (MF) approximation is proposed for simplifying the intractable inference. By assuming conjugate-exponential priors for target kinematic state, target visibility state, and motion mode-model association, the MF approximation decouples the joint inference of target kinematic state, target visibility state, motion mode-model association into individual low-dimensional inference, yielding simple message passing update equations. The BP is exploited to approximate the probabilities of data association events since it is compatible with hard constraints. Finally, the approximate posterior probability distributions are updated iteratively in a closed-loop manner, which is effective for dealing with the coupling issue between the estimations of target kinematic state and target visibility state and decisions on motion mode-model association and data association. The performance of the proposed algorithm is demonstrated by comparing with the well-known multiple maneuvering target tracking algorithms, including interacting multiple model joint probabilistic data association, interacting multiple model hypothesis-oriented multiple hypothesis tracker and multiple model generalized labeled multi-Bernoulli.



rate research

Read More

Target detection and tracking provides crucial information for motion planning and decision making in autonomous driving. This paper proposes an online multi-object tracking (MOT) framework with tracking-by-detection for maneuvering vehicles under motion uncertainty in dynamic road context. We employ a point cloud based vehicle detector to provide real-time 3D bounding boxes of detected vehicles and conduct the online bipartite optimization of the maneuver-orientated data association between the detections and the targets. Kalman Filter (KF) is adopted as the backbone for multi-object tracking. In order to entertain the maneuvering uncertainty, we leverage the interacting multiple model (IMM) approach to obtain the textit{a-posterior} residual as the cost for each association hypothesis, which is calculated with the hybrid model posterior (after mode-switch). Road context is integrated to conduct adjustments of the time varying transition probability matrix (TPM) of the IMM to regulate the maneuvers according to road segments and traffic sign/signals, with which the data association is performed in a unified spatial-temporal fashion. Experiments show our framework is able to effectively track multiple vehicles with maneuvers subject to dynamic road context and localization drift.
This study follows many classical approaches to multi-object tracking (MOT) that model the problem using dynamic graphical data structures, and adapts this formulation to make it amenable to modern neural networks. Our main contributions in this work are the creation of a framework based on dynamic undirected graphs that represent the data association problem over multiple timesteps, and a message passing graph neural network (MPNN) that operates on these graphs to produce the desired likelihood for every association therein. We also provide solutions and propositions for the computational problems that need to be addressed to create a memory-efficient, real-time, online algorithm that can reason over multiple timesteps, correct previous mistakes, update beliefs, and handle missed/false detections. To demonstrate the efficacy of our approach, we only use the 2D box location and object category ID to construct the descriptor for each object instance. Despite this, our model performs on par with state-of-the-art approaches that make use of additional sensors, as well as multiple hand-crafted and/or learned features. This illustrates that given the right problem formulation and model design, raw bounding boxes (and their kinematics) from any off-the-shelf detector are sufficient to achieve competitive tracking results on challenging MOT benchmarks.
Tracking an unknown number of targets based on multipath measurements provided by an over-the-horizon radar (OTHR) network with a statistical ionospheric model is complicated, which requires solving four subproblems: target detection, target tracking, multipath data association and ionospheric height identification. A joint solution is desired since the four subproblems are highly correlated, but suffering from the intractable inference problem of high-dimensional latent variables. In this paper, a unified message passing approach, combining belief propagation (BP) and mean-field (MF) approximation, is developed for simplifying the intractable inference. Based upon the factor graph corresponding to a factorization of the joint probability distribution function (PDF) of the latent variables and a choice for a separation of this factorization into BP region and MF region, the posterior PDFs of continuous latent variables including target kinematic state, target visibility state, and ionospheric height, are approximated by MF due to its simple MP update rules for conjugate-exponential models. With regard to discrete multipath data association which contains one-to-one frame (hard) constraints, its PDF is approximated by loopy BP. Finally, the approximated posterior PDFs are updated iteratively in a closed-loop manner, which is effective for dealing with the coupling issue among target detection, target tracking, multipath data association, and ionospheric height identification. Meanwhile, the proposed approach has the measurement-level fusion architecture due to the direct processing of the raw multipath measurements from an OTHR network, which is benefit to improving target tracking performance. Its performance is demonstrated on a simulated OTHR network multitarget tracking scenario.
We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error at the fusion center. When independent states are considered, the optimum fusion rule over a batch of observations has already been derived, however its complexity prevents its use in conjunction with large observation windows. In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good performance also in the case of dependent system states. By first focusing on the case of small observation windows, we use numerical simulations to show that the proposed scheme introduces a negligible increase of the decision error probability compared to the optimum fusion rule. We then analyse the performance of the new scheme when the FC make its decision by relying on long observation windows. We do so by considering both the case of independent and Markovian system states and show that the obtained performance are superior to those obtained with prior suboptimal schemes. As an additional result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to minimise the mutual information between the sequence system states and the reports submitted to the FC, rather than always flipping the local decision.
We present a message passing algorithm for localization and tracking in multipath-prone environments that implicitly considers obstructed line-of-sight situations. The proposed adaptive probabilistic data association algorithm infers the position of a mobile agent using multiple anchors by utilizing delay and amplitude of the multipath components (MPCs) as well as their respective uncertainties. By employing a nonuniform clutter model, we enable the algorithm to facilitate the position information contained in the MPCs to support the estimation of the agent position without exact knowledge about the environment geometry. Our algorithm adapts in an online manner to both, the time-varying signal-to-noise-ratio and line-of-sight (LOS) existence probability of each anchor. In a numerical analysis we show that the algorithm is able to operate reliably in environments characterized by strong multipath propagation, even if a temporary obstruction of all anchors occurs simultaneously.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا