No Arabic abstract
We present a message passing algorithm for localization and tracking in multipath-prone environments that implicitly considers obstructed line-of-sight situations. The proposed adaptive probabilistic data association algorithm infers the position of a mobile agent using multiple anchors by utilizing delay and amplitude of the multipath components (MPCs) as well as their respective uncertainties. By employing a nonuniform clutter model, we enable the algorithm to facilitate the position information contained in the MPCs to support the estimation of the agent position without exact knowledge about the environment geometry. Our algorithm adapts in an online manner to both, the time-varying signal-to-noise-ratio and line-of-sight (LOS) existence probability of each anchor. In a numerical analysis we show that the algorithm is able to operate reliably in environments characterized by strong multipath propagation, even if a temporary obstruction of all anchors occurs simultaneously.
The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of $x$ observed from a noisy version of the transform coefficients $z = Ax$. In fact, for large zero-mean i.i.d sub-Gaussian $A$, GAMP is characterized by a state evolution whose fixed points, when unique, are optimal. For generic $A$, however, GAMP may diverge. In this paper, we propose adaptive damping and mean-removal strategies that aim to prevent divergence. Numerical results demonstrate significantly enhanced robustness to non-zero-mean, rank-deficient, column-correlated, and ill-conditioned $A$.
Due to the massive number of devices in the M2M communication era, new challenges have been brought to the existing random-access (RA) mechanism, such as severe preamble collisions and resource block (RB) wastes. To address these problems, a novel sparse message passing (SMP) algorithm is proposed, based on a factor graph on which Bernoulli messages are updated. The SMP enables an accurate estimation on the activity of the devices and the identity of the preamble chosen by each active device. Aided by the estimation, the RB efficiency for the uplink data transmission can be improved, especially among the collided devices. In addition, an analytical tool is derived to analyze the iterative evolution and convergence of the SMP algorithm. Finally, numerical simulations are provided to verify the validity of our analytical results and the significant improvement of the proposed SMP on estimation error rate even when preamble collision occurs.
Reconstruction of images from noisy linear measurements is a core problem in image processing, for which convex optimization methods based on total variation (TV) minimization have been the long-standing state-of-the-art. We present an alternative probabilistic reconstruction procedure based on approximate message-passing, Scampi, which operates in the compressive regime, where the inverse imaging problem is underdetermined. While the proposed method is related to the recently proposed GrAMPA algorithm of Borgerding, Schniter, and Rangan, we further develop the probabilistic approach to compressive imaging by introducing an expectation-maximizaiton learning of model parameters, making the Scampi robust to model uncertainties. Additionally, our numerical experiments indicate that Scampi can provide reconstruction performance superior to both GrAMPA as well as convex approaches to TV reconstruction. Finally, through exhaustive best-case experiments, we show that in many cases the maximal performance of both Scampi and convex TV can be quite close, even though the approaches are a prori distinct. The theoretical reasons for this correspondence remain an open question. Nevertheless, the proposed algorithm remains more practical, as it requires far less parameter tuning to perform optimally.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
The orthogonal time frequency space (OTFS) modulation has emerged as a promising modulation scheme for high mobility wireless communications. To enable efficient OTFS detection in the delay-Doppler (DD) domain, the DD domain channels need to be acquired accurately. To achieve the low latency requirement in future wireless communications, the time duration of the OTFS block should be small, therefore fractional Doppler shifts have to be considered to avoid significant modelling errors due to the assumption of integer Doppler shifts. However, there lack investigations on the estimation of OTFS channels with fractional Doppler shifts in the literature. In this work, we develop a high performing channel estimator for OTFS with the bi-orthogonal waveform or the rectangular waveform. Instead of estimating the DD domain channel directly, we estimate the channel gains and (fractional) Doppler shifts that parameterize the DD domain channel. The estimation is formulated as a structured signal recovery problem with a Bayesian treatment. Based on a factor graph representation of the problem, an efficient message passing algorithm is developed to recover the structured sparse signal (thereby the OTFS channel). The Cramer-Rao Lower Bound (CRLB) for the estimation is developed and the effectiveness of the algorithm is demonstrated through simulations.