Do you want to publish a course? Click here

Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering

356   0   0.0 ( 0 )
 Added by Shiyue Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question drifts away from the given context and answer. In this paper, we first propose two semantics-enhanced rewards obtained from downstream question paraphrasing and question answering tasks to regularize the QG model to generate semantically valid questions. Second, since the traditional evaluation metrics (e.g., BLEU) often fall short in evaluating the quality of generated questions, we propose a QA-based evaluation method which measures the QG models ability to mimic human annotators in generating QA training data. Experiments show that our method achieves the new state-of-the-art performance w.r.t. traditional metrics, and also performs best on our QA-based evaluation metrics. Further, we investigate how to use our QG model to augment QA datasets and enable semi-supervised QA. We propose two ways to generate synthetic QA pairs: generate new questions from existing articles or collect QA pairs from new articles. We also propose two empirically effective strategies, a data filter and mixing mini-batch training, to properly use the QG-generated data for QA. Experiments show that our method improves over both BiDAF and BERT QA baselines, even without introducing new articles.



rate research

Read More

Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving information from ordered utterances. However, the sequential order of dialogue is important to build a robust spoken conversational question answering system, and the changes of utterances order may severely result in low-quality and incoherent corpora. To this end, we introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence among spoken documents. Specifically, we design a joint learning framework where the auxiliary self-supervised tasks can enable the pre-trained SCQA systems towards more coherent and meaningful spoken dialogue learning. We also utilize the proposed self-supervised learning tasks to capture intra-sentence coherence. Experimental results demonstrate that our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models. Our method achieves state-of-the-art results on the Spoken-CoQA dataset.
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised training stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks.
We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.
Although deep neural networks have achieved tremendous success for question answering (QA), they are still suffering from heavy computational and energy cost for real product deployment. Further, existing QA systems are bottlenecked by the encoding time of real-time questions with neural networks, thus suffering from detectable latency in deployment for large-volume traffic. To reduce the computational cost and accelerate real-time question answering (RTQA) for practical usage, we propose to remove all the neural networks from online QA systems, and present Ocean-Q (an Ocean of Questions), which introduces a new question generation (QG) model to generate a large pool of QA pairs offline, then in real time matches an input question with the candidate QA pool to predict the answer without question encoding. Ocean-Q can be readily deployed in existing distributed database systems or search engine for large-scale query usage, and much greener with no additional cost for maintaining large neural networks. Experiments on SQuAD(-open) and HotpotQA benchmarks demonstrate that Ocean-Q is able to accelerate the fastest state-of-the-art RTQA system by 4X times, with only a 3+% accuracy drop.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا