No Arabic abstract
After the theoretical prediction that SmB$_6$ is a topological Kondo insulator, there has been an explosion of studies on the SmB$_6$ surface. However, there is not yet an agreement on even the most basic quantities such as the surface carrier density and mobility. In this paper, we carefully revisit Corbino disk magnetotransport studies to find those surface transport parameters. We first show that subsurface cracks exist in the SmB$_6$ crystals, arising both from surface preparation and during the crystal growth. We provide evidence that these hidden subsurface cracks are additional conduction channels, and the large disagreement between earlier surface SmB$_6$ studies may originate from previous interpretations not taking this extra conduction path into account. We provide an update of a more reliable magnetotransport data than the previous one (Phys. Rev. B 92, 115110) and find that the orders-of-magnitude large disagreements in carrier density and mobility come from the surface preparation and the transport geometry rather than the intrinsic sample quality. From this magnetotransport study, we find an updated estimate of the carrier density and mobility of 2.71$times$10$^{13}$ (1/cm$^2$) and 104.5 (cm$^{2}$/V$cdot$sec), respectively. We compare our results with other studies of the SmB$_6$ surface. By this comparison, we provide insight into the disagreements and agreements of the previously reported angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and magnetotorque quantum oscillations measurements.
We show that the resistivity plateau of SmB$_6$ at low temperature, typically taken as a hallmark of its conducting surface state, can systematically be influenced by different surface treatments. We investigate the effect of inflicting an increasing number of hand-made scratches and microscopically defined focused ion beam-cut trenches on the surfaces of flux-grown Sm$_{1-x}$Gd$_x$B$_6$ with $x =$ 0, 0.0002. Both treatments increase the resistance of the low-temperature plateau, whereas the bulk resistance at higher temperature largely remains unaffected. Notably, the temperature at which the resistance deviates from the thermally activated behavior decreases with cumulative surface damage. These features are more pronounced for the focused ion beam treated samples, with the difference likely being related to the absence of microscopic defects like subsurface cracks. Therefore, our method presents a systematic way of controlling the surface conductance.
An increasing number of low carrier density materials exhibit a surprisingly large transport mean free path due to inefficient momentum relaxation. Consequently, charge transport in these systems is markedly non-ohmic but rather ballistic or hydrodynamic, features which can be explored by driving current through narrow channels. Using a kinetic equation approach we theoretically investigate how a non-quantizing magnetic field discerns ballistic and hydrodynamic transport, in particular in the spatial dependence of the transverse electric field, $E_y$: We find that $E_y$ is locally enhanced when the flow exhibits a sharp directional anisotropy in the non-equilibrium density. As a consequence, at weak magnetic fields, the curvature of $E_y$ has opposite signs in the ballistic and hydrodynamic regimes. Moreover, we find a robust signature of the onset of non-local correlations in the form of distinctive peaks of the transverse field, which are accessible by local measurements. Our results demonstrate that a purely hydrodynamic approach is insufficient in the Gurzhi regime once a magnetic field is introduced.
We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound SmB6, a prototype Kondo insulator. Temperature dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ~T*=20 K, well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20K) indicates the emergence of a surface state with an effective electron mass of 0.1me. Conductivity dynamics following optical excitation are also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20K, indicative of another channel opening up in the low energy electrodynamics. Taken together, these results suggest the onset of a surface state well below the crossover temperature (100K) after long-range coherence of the f-electron Kondo lattice is established.
The resistivity $rho$ and Hall resistivity $rho_H$ are measured on FeSe at pressures up to $P$ = 28.3 kbar in magnetic fields up to $B$ = 14.5 T. The $rho(B)$ and $rho_H(B)$ curves are analyzed with multicarrier models to estimate the carrier density and mobility as a function of $P$ and temperature ($ Tleqslant$ 110 K). It is shown that the pressure-induced antiferromagnetic transition is accompanied by an abrupt reduction of the carrier density and scattering. This indicates that the electronic structure is reconstructed significantly by the antiferromagnetic order.
The surface of a 3D topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetotransport in Bi-based 3D topological insulators, as well as the superconducting transport properties of hybrid structures consisting of superconductors and these topological insulators. The helical spin-momentum coupling of the surface state electrons becomes visible in quantum corrections to the conductivity and magnetoresistance oscillations. An analysis will be provided of the reported magnetoresistance, also in the presence of bulk conductivity shunts. Special attention is given to the large and linear magnetoresistance. Superconductivity can be induced in topological superconductors by means of the proximity effect. The induced supercurrents, Josephson effects and current-phase relations will be reviewed. These materials hold great potential in the field of spintronics and the route towards Majorana devices.