Do you want to publish a course? Click here

Multiple Patients Behavior Detection in Real-time using mmWave Radar and Deep CNNs

392   0   0.0 ( 0 )
 Added by Feng Jin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

To address potential gaps noted in patient monitoring in the hospital, a novel patient behavior detection system using mmWave radar and deep convolution neural network (CNN), which supports the simultaneous recognition of multiple patients behaviors in real-time, is proposed. In this study, we use an mmWave radar to track multiple patients and detect the scattering point cloud of each one. For each patient, the Doppler pattern of the point cloud over a time period is collected as the behavior signature. A three-layer CNN model is created to classify the behavior for each patient. The tracking and point clouds detection algorithm was also implemented on an mmWave radar hardware platform with an embedded graphics processing unit (GPU) board to collect Doppler pattern and run the CNN model. A training dataset of six types of behavior were collected, over a long duration, to train the model using Adam optimizer with an objective to minimize cross-entropy loss function. Lastly, the system was tested for real-time operation and obtained a very good inference accuracy when predicting each patients behavior in a two-patient scenario.



rate research

Read More

In this paper, mm-Pose, a novel approach to detect and track human skeletons in real-time using an mmWave radar, is proposed. To the best of the authors knowledge, this is the first method to detect >15 distinct skeletal joints using mmWave radar reflection signals. The proposed method would find several applications in traffic monitoring systems, autonomous vehicles, patient monitoring systems and defense forces to detect and track human skeleton for effective and preventive decision making in real-time. The use of radar makes the system operationally robust to scene lighting and adverse weather conditions. The reflected radar point cloud in range, azimuth and elevation are first resolved and projected in Range-Azimuth and Range-Elevation planes. A novel low-size high-resolution radar-to-image representation is also presented, that overcomes the sparsity in traditional point cloud data and offers significant reduction in the subsequent machine learning architecture. The RGB channels were assigned with the normalized values of range, elevation/azimuth and the power level of the reflection signals for each of the points. A forked CNN architecture was used to predict the real-world position of the skeletal joints in 3-D space, using the radar-to-image representation. The proposed method was tested for a single human scenario for four primary motions, (i) Walking, (ii) Swinging left arm, (iii) Swinging right arm, and (iv) Swinging both arms to validate accurate predictions for motion in range, azimuth and elevation. The detailed methodology, implementation, challenges, and validation results are presented.
In multimodal traffic monitoring, we gather traffic statistics for distinct transportation modes, such as pedestrians, cars and bicycles, in order to analyze and improve peoples daily mobility in terms of safety and convenience. On account of its robustness to bad light and adverse weather conditions, and inherent speed measurement ability, the radar sensor is a suitable option for this application. However, the sparse radar data from conventional commercial radars make it extremely challenging for transportation mode classification. Thus, we propose to use a high-resolution millimeter-wave(mmWave) radar sensor to obtain a relatively richer radar point cloud representation for a traffic monitoring scenario. Based on a new feature vector, we use the multivariate Gaussian mixture model (GMM) to do the radar point cloud segmentation, i.e. `point-wise classification, in an unsupervised learning environment. In our experiment, we collected radar point clouds for pedestrians and cars, which also contained the inevitable clutter from the surroundings. The experimental results using GMM on the new feature vector demonstrated a good segmentation performance in terms of the intersection-over-union (IoU) metrics. The detailed methodology and validation metrics are presented and discussed.
Millimeter-wave (mmW) radars are being increasingly integrated in commercial vehicles to support new Adaptive Driver Assisted Systems (ADAS) for its ability to provide high accuracy location, velocity, and angle estimates of objects, largely independent of environmental conditions. Such radar sensors not only perform basic functions such as detection and ranging/angular localization, but also provide critical inputs for environmental perception via object recognition and classification. To explore radar-based ADAS applications, we have assembled a lab-scale frequency modulated continuous wave (FMCW) radar test-bed (https://depts.washington.edu/funlab/research) based on Texas Instruments (TI) automotive chipset family. In this work, we describe the test-bed components and provide a summary of FMCW radar operational principles. To date, we have created a large raw radar dataset for various objects under controlled scenarios. Thereafter, we apply some radar imaging algorithms to the collected dataset, and present some preliminary results that validate its capabilities in terms of object recognition.
84 - Yuliang Sun , Tai Fei , Xibo Li 2020
In this paper, a real-time signal processing frame-work based on a 60 GHz frequency-modulated continuous wave (FMCW) radar system to recognize gestures is proposed. In order to improve the robustness of the radar-based gesture recognition system, the proposed framework extracts a comprehensive hand profile, including range, Doppler, azimuth and elevation, over multiple measurement-cycles and encodes them into a feature cube. Rather than feeding the range-Doppler spectrum sequence into a deep convolutional neural network (CNN) connected with recurrent neural networks, the proposed framework takes the aforementioned feature cube as input of a shallow CNN for gesture recognition to reduce the computational complexity. In addition, we develop a hand activity detection (HAD) algorithm to automatize the detection of gestures in real-time case. The proposed HAD can capture the time-stamp at which a gesture finishes and feeds the hand profile of all the relevant measurement-cycles before this time-stamp into the CNN with low latency. Since the proposed framework is able to detect and classify gestures at limited computational cost, it could be deployed in an edge-computing platform for real-time applications, whose performance is notedly inferior to a state-of-the-art personal computer. The experimental results show that the proposed framework has the capability of classifying 12 gestures in real-time with a high F1-score.
116 - Feng Jin , Arindam Sengupta , 2020
In this paper we propose mmFall - a novel fall detection system, which comprises of (i) the emerging millimeter-wave (mmWave) radar sensor to collect the human bodys point cloud along with the body centroid, and (ii) a variational recurrent autoencoder (VRAE) to compute the anomaly level of the body motion based on the acquired point cloud. A fall is claimed to have occurred when the spike in anomaly level and the drop in centroid height occur simultaneously. The mmWave radar sensor provides several advantages, such as privacycompliance and high-sensitivity to motion, over the traditional sensing modalities. However, (i) randomness in radar point cloud data and (ii) difficulties in fall collection/labeling in the traditional supervised fall detection approaches are the two main challenges. To overcome the randomness in radar data, the proposed VRAE uses variational inference, a probabilistic approach rather than the traditional deterministic approach, to infer the posterior probability of the bodys latent motion state at each frame, followed by a recurrent neural network (RNN) to learn the temporal features of the motion over multiple frames. Moreover, to circumvent the difficulties in fall data collection/labeling, the VRAE is built upon an autoencoder architecture in a semi-supervised approach, and trained on only normal activities of daily living (ADL) such that in the inference stage the VRAE will generate a spike in the anomaly level once an abnormal motion, such as fall, occurs. During the experiment, we implemented the VRAE along with two other baselines, and tested on the dataset collected in an apartment. The receiver operating characteristic (ROC) curve indicates that our proposed model outperforms the other two baselines, and achieves 98% detection out of 50 falls at the expense of just 2 false alarms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا