Do you want to publish a course? Click here

Free-standing silicon shadow masks for transmon qubit fabrication

53   0   0.0 ( 0 )
 Added by Ioannis Tsioutsios
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks and found coherence quality factors comparable to those fabricated with standard techniques.



rate research

Read More

Low dimensional systems, nanowires, in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor nanowires is very important for their applications in their electronic devices. In the present study, the thermal conductivity of a freestanding silicon nanowire (NW) is estimated employing the Raman spectroscopy. The advantage of this technique is that the light source (laser) can be used both as heating and excitation source. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are carried out. A critical analysis of effective laser power absorbed by exposed silicon NW, the detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of 112 nm diameter is estimated to be ~53 W/m.K.
Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0$pm$5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.
123 - J. P. Dodson 2020
We present an improved fabrication process for overlapping aluminum gate quantum dot devices on Si/SiGe heterostructures that incorporates low-temperature inter-gate oxidation, thermal annealing of gate oxide, on-chip electrostatic discharge (ESD) protection, and an optimized interconnect process for thermal budget considerations. This process reduces gate-to-gate leakage, damage from ESD, dewetting of aluminum, and formation of undesired alloys in device interconnects. Additionally, cross-sectional scanning transmission electron microscopy (STEM) images elucidate gate electrode morphology in the active region as device geometry is varied. We show that overlapping aluminum gate layers homogeneously conform to the topology beneath them, independent of gate geometry, and identify critical dimensions in the gate geometry where pattern transfer becomes non-ideal, causing device failure.
Qubit information processors are increasing in footprint but currently rely on e-beam lithography for patterning the required Josephson junctions (JJs). Advanced optical lithography is an alternative patterning method, and we report on the development of transmon qubits patterned solely with optical lithography. The lithography uses 193 nm wavelength exposure and 300-mm large silicon wafers. Qubits and arrays of evaluation JJs were patterned with process control which resulted in narrow feature distributions: a standard deviation of 0:78% for a 220 nm linewidth pattern realized across over half the width of the wafers. Room temperature evaluation found a 2.8-3.6% standard deviation in JJ resistance in completed chips. The qubits used aluminum and titanium nitride films on silicon substrates without substantial silicon etching. T1 times of the qubits were extracted at 26 - 27 microseconds, indicating a low level of material-based qubit defects. This study shows that large wafer optical lithography on silicon is adequate for high-quality transmon qubits, and shows a promising path for improving many-qubit processors.
We describe a microfabrication process for superconducting through-silicon vias appropriate for use in superconducting qubit quantum processors. With a sloped-wall via geometry, we can use non-conformal metal deposition methods such as electron-beam evaporation and sputtering, which reliably deposit high quality superconducting films. Via superconductivity is validated by demonstrating zero via-to-via resistance below the critical temperature of aluminum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا