Do you want to publish a course? Click here

Development of transmon qubits solely from optical lithography on 300mm wafers

52   0   0.0 ( 0 )
 Added by Kevin Osborn
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Qubit information processors are increasing in footprint but currently rely on e-beam lithography for patterning the required Josephson junctions (JJs). Advanced optical lithography is an alternative patterning method, and we report on the development of transmon qubits patterned solely with optical lithography. The lithography uses 193 nm wavelength exposure and 300-mm large silicon wafers. Qubits and arrays of evaluation JJs were patterned with process control which resulted in narrow feature distributions: a standard deviation of 0:78% for a 220 nm linewidth pattern realized across over half the width of the wafers. Room temperature evaluation found a 2.8-3.6% standard deviation in JJ resistance in completed chips. The qubits used aluminum and titanium nitride films on silicon substrates without substantial silicon etching. T1 times of the qubits were extracted at 26 - 27 microseconds, indicating a low level of material-based qubit defects. This study shows that large wafer optical lithography on silicon is adequate for high-quality transmon qubits, and shows a promising path for improving many-qubit processors.



rate research

Read More

We characterize highly coherent transmon qubits fabricated with a direct-write photolithography system. Multi-layer evaporation and oxidation allows us to change the critical current density by reducing the effective tunneling area and increasing the barrier thickness. Surface treatments before resist application and again before evaporation result in high coherence devices. With optimized surface treatments we achieve energy relaxation $T_1$ times in excess of $80 mu$s for three dimensional transmon qubits with Josephson junction lithographic areas of 2 $mumathrm{m}^2$.
Silicon-Germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to eletro-optical modulators and quantum dots. The diverse properties of SiGe also make it attractive to implementations involving superconducting quantum computing. Here we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 $mu$s, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state of the art performance of superconducting quantum circuits.
Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks and found coherence quality factors comparable to those fabricated with standard techniques.
Superconducting transmon qubits comprise one of the most promising platforms for quantum information processing due to their long coherence times and to their scalability into larger qubit networks. However, their weakly anharmonic spectrum leads to spectral crowding in multiqubit systems, making it challenging to implement fast, high-fidelity gates while avoiding leakage errors. To address this challenge, we use a protocol known as SWIPHT [Phys. Rev. B 91, 161405(R) (2015)], which yields smooth, simple microwave pulses designed to suppress leakage without sacrificing gate speed through spectral selectivity. Here, we determine the parameter regimes in which SWIPHT is effective and demonstrate that in these regimes it systematically produces two-qubit gate fidelities for cavity-coupled transmons in the range 99.6%-99.9% with gate times as fast as 23 ns. Our results are obtained from full numerical simulations that include current experimental levels of relaxation and dephasing. These high fidelities persist over a wide range of system parameters that encompass many current experimental setups and are insensitive to small parameter variations and pulse imperfections.
We demonstrate rapid, first-order sideband transitions between a superconducting resonator and a frequency-modulated transmon qubit. The qubit contains a substantial asymmetry between its Josephson junctions leading to a linear portion of the energy band near the resonator frequency. The sideband transitions are driven with a magnetic flux signal of a few hundred MHz coupled to the qubit. This modulates the qubit splitting at a frequency near the detuning between the dressed qubit and resonator frequencies, leading to rates up to 85 MHz for exchanging quanta between the qubit and resonator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا