No Arabic abstract
In this paper, we propose one novel model for point cloud semantic segmentation, which exploits both the local and global structures within the point cloud based on the contextual point representations. Specifically, we enrich each point representation by performing one novel gated fusion on the point itself and its contextual points. Afterwards, based on the enriched representation, we propose one novel graph pointnet module, relying on the graph attention block to dynamically compose and update each point representation within the local point cloud structure. Finally, we resort to the spatial-wise and channel-wise attention strategies to exploit the point cloud global structure and thereby yield the resulting semantic label for each point. Extensive results on the public point cloud databases, namely the S3DIS and ScanNet datasets, demonstrate the effectiveness of our proposed model, outperforming the state-of-the-art approaches. Our code for this paper is available at https://github.com/fly519/ELGS.
How to learn long-range dependencies from 3D point clouds is a challenging problem in 3D point cloud analysis. Addressing this problem, we propose a global attention network for point cloud semantic segmentation, named as GA-Net, consisting of a point-independent global attention module and a point-dependent global attention module for obtaining contextual information of 3D point clouds in this paper. The point-independent global attention module simply shares a global attention map for all 3D points. In the point-dependent global attention module, for each point, a novel random cross attention block using only two randomly sampled subsets is exploited to learn the contextual information of all the points. Additionally, we design a novel point-adaptive aggregation block to replace linear skip connection for aggregating more discriminate features. Extensive experimental results on three 3D public datasets demonstrate that our method outperforms state-of-the-art methods in most cases.
Projecting the point cloud on the 2D spherical range image transforms the LiDAR semantic segmentation to a 2D segmentation task on the range image. However, the LiDAR range image is still naturally different from the regular 2D RGB image; for example, each position on the range image encodes the unique geometry information. In this paper, we propose a new projection-based LiDAR semantic segmentation pipeline that consists of a novel network structure and an efficient post-processing step. In our network structure, we design a FID (fully interpolation decoding) module that directly upsamples the multi-resolution feature maps using bilinear interpolation. Inspired by the 3D distance interpolation used in PointNet++, we argue this FID module is a 2D version distance interpolation on $(theta, phi)$ space. As a parameter-free decoding module, the FID largely reduces the model complexity by maintaining good performance. Besides the network structure, we empirically find that our model predictions have clear boundaries between different semantic classes. This makes us rethink whether the widely used K-nearest-neighbor post-processing is still necessary for our pipeline. Then, we realize the many-to-one mapping causes the blurring effect that some points are mapped into the same pixel and share the same label. Therefore, we propose to process those occluded points by assigning the nearest predicted label to them. This NLA (nearest label assignment) post-processing step shows a better performance than KNN with faster inference speed in the ablation study. On the SemanticKITTI dataset, our pipeline achieves the best performance among all projection-based methods with $64 times 2048$ resolution and all point-wise solutions. With a ResNet-34 as the backbone, both the training and testing of our model can be finished on a single RTX 2080 Ti with 11G memory. The code is released.
Interpretation of Airborne Laser Scanning (ALS) point clouds is a critical procedure for producing various geo-information products like 3D city models, digital terrain models and land use maps. In this paper, we present a local and global encoder network (LGENet) for semantic segmentation of ALS point clouds. Adapting the KPConv network, we first extract features by both 2D and 3D point convolutions to allow the network to learn more representative local geometry. Then global encoders are used in the network to exploit contextual information at the object and point level. We design a segment-based Edge Conditioned Convolution to encode the global context between segments. We apply a spatial-channel attention module at the end of the network, which not only captures the global interdependencies between points but also models interactions between channels. We evaluate our method on two ALS datasets namely, the ISPRS benchmark dataset and DCF2019 dataset. For the ISPRS benchmark dataset, our model achieves state-of-the-art results with an overall accuracy of 0.845 and an average F1 score of 0.737. With regards to the DFC2019 dataset, our proposed network achieves an overall accuracy of 0.984 and an average F1 score of 0.834.
Birds-eye-view (BEV) is a powerful and widely adopted representation for road scenes that captures surrounding objects and their spatial locations, along with overall context in the scene. In this work, we focus on birds eye semantic segmentation, a task that predicts pixel-wise semantic segmentation in BEV from side RGB images. This task is made possible by simulators such as Carla, which allow for cheap data collection, arbitrary camera placements, and supervision in ways otherwise not possible in the real world. There are two main challenges to this task: the view transformation from side view to birds eye view, as well as transfer learning to unseen domains. Existing work transforms between views through fully connected layers and transfer learns via GANs. This suffers from a lack of depth reasoning and performance degradation across domains. Our novel 2-staged perception pipeline explicitly predicts pixel depths and combines them with pixel semantics in an efficient manner, allowing the model to leverage depth information to infer objects spatial locations in the BEV. In addition, we transfer learning by abstracting high-level geometric features and predicting an intermediate representation that is common across different domains. We publish a new dataset called BEVSEG-Carla and show that our approach improves state-of-the-art by 24% mIoU and performs well when transferred to a new domain.
3D point cloud semantic and instance segmentation is crucial and fundamental for 3D scene understanding. Due to the complex structure, point sets are distributed off balance and diversely, which appears as both category imbalance and pattern imbalance. As a result, deep networks can easily forget the non-dominant cases during the learning process, resulting in unsatisfactory performance. Although re-weighting can reduce the influence of the well-classified examples, they cannot handle the non-dominant patterns during the dynamic training. In this paper, we propose a memory-augmented network to learn and memorize the representative prototypes that cover diverse samples universally. Specifically, a memory module is introduced to alleviate the forgetting issue by recording the patterns seen in mini-batch training. The learned memory items consistently reflect the interpretable and meaningful information for both dominant and non-dominant categories and cases. The distorted observations and rare cases can thus be augmented by retrieving the stored prototypes, leading to better performances and generalization. Exhaustive experiments on the benchmarks, i.e. S3DIS and ScanNetV2, reflect the superiority of our method on both effectiveness and efficiency. Not only the overall accuracy but also nondominant classes have improved substantially.