Do you want to publish a course? Click here

LGENet: Local and Global Encoder Network for Semantic Segmentation of Airborne Laser Scanning Point Clouds

67   0   0.0 ( 0 )
 Added by Michael Ying Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Interpretation of Airborne Laser Scanning (ALS) point clouds is a critical procedure for producing various geo-information products like 3D city models, digital terrain models and land use maps. In this paper, we present a local and global encoder network (LGENet) for semantic segmentation of ALS point clouds. Adapting the KPConv network, we first extract features by both 2D and 3D point convolutions to allow the network to learn more representative local geometry. Then global encoders are used in the network to exploit contextual information at the object and point level. We design a segment-based Edge Conditioned Convolution to encode the global context between segments. We apply a spatial-channel attention module at the end of the network, which not only captures the global interdependencies between points but also models interactions between channels. We evaluate our method on two ALS datasets namely, the ISPRS benchmark dataset and DCF2019 dataset. For the ISPRS benchmark dataset, our model achieves state-of-the-art results with an overall accuracy of 0.845 and an average F1 score of 0.737. With regards to the DFC2019 dataset, our proposed network achieves an overall accuracy of 0.984 and an average F1 score of 0.834.



rate research

Read More

93 - Sihan Chen , Xinxin Zhu , Wei Liu 2021
Depth information matters in RGB-D semantic segmentation task for providing additional geometric information to color images. Most existing methods exploit a multi-stage fusion strategy to propagate depth feature to the RGB branch. However, at the very deep stage, the propagation in a simple element-wise addition manner can not fully utilize the depth information. We propose Global-Local propagation network (GLPNet) to solve this problem. Specifically, a local context fusion module(L-CFM) is introduced to dynamically align both modalities before element-wise fusion, and a global context fusion module(G-CFM) is introduced to propagate the depth information to the RGB branch by jointly modeling the multi-modal global context features. Extensive experiments demonstrate the effectiveness and complementarity of the proposed fusion modules. Embedding two fusion modules into a two-stream encoder-decoder structure, our GLPNet achieves new state-of-the-art performance on two challenging indoor scene segmentation datasets, i.e., NYU-Depth v2 and SUN-RGBD dataset.
200 - Shuang Deng , Qiulei Dong 2021
How to learn long-range dependencies from 3D point clouds is a challenging problem in 3D point cloud analysis. Addressing this problem, we propose a global attention network for point cloud semantic segmentation, named as GA-Net, consisting of a point-independent global attention module and a point-dependent global attention module for obtaining contextual information of 3D point clouds in this paper. The point-independent global attention module simply shares a global attention map for all 3D points. In the point-dependent global attention module, for each point, a novel random cross attention block using only two randomly sampled subsets is exploited to learn the contextual information of all the points. Additionally, we design a novel point-adaptive aggregation block to replace linear skip connection for aggregating more discriminate features. Extensive experimental results on three 3D public datasets demonstrate that our method outperforms state-of-the-art methods in most cases.
Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the learning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENet
99 - Xu Wang , Jingming He , Lin Ma 2019
In this paper, we propose one novel model for point cloud semantic segmentation, which exploits both the local and global structures within the point cloud based on the contextual point representations. Specifically, we enrich each point representation by performing one novel gated fusion on the point itself and its contextual points. Afterwards, based on the enriched representation, we propose one novel graph pointnet module, relying on the graph attention block to dynamically compose and update each point representation within the local point cloud structure. Finally, we resort to the spatial-wise and channel-wise attention strategies to exploit the point cloud global structure and thereby yield the resulting semantic label for each point. Extensive results on the public point cloud databases, namely the S3DIS and ScanNet datasets, demonstrate the effectiveness of our proposed model, outperforming the state-of-the-art approaches. Our code for this paper is available at https://github.com/fly519/ELGS.
3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا