Do you want to publish a course? Click here

Diamond magnetometer enhanced by ferrite flux concentrators

96   0   0.0 ( 0 )
 Added by Victor Acosta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (<1 kHz) is presently >10 pT s^{1/2}, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers. By inserting an NV-doped diamond membrane between two ferrite cones in a bowtie configuration, we realize a ~250-fold increase of the magnetic field amplitude within the diamond. We demonstrate a sensitivity of ~0.9 pT s^{1/2} to magnetic fields in the frequency range between 10 and 1000 Hz, using a dual-resonance modulation technique to suppress the effect of thermal shifts of the NV spin levels. This is accomplished using 200 mW of laser power and 20 mW of microwave power. This work introduces a new dimension for diamond quantum sensors by using micro-structured magnetic materials to manipulate magnetic fields.



rate research

Read More

We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$sqrt{rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$sqrt{rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$sqrt{rm{Hz}}$ with the sensing volume of $sim$ 390 $mu$m $times$ 4500 $mu$m$^{2}$. The presented miniaturized device is the basis for an endoscopic magnetic field sensor for biomedical applications.
Diamond defect centers are promising solid state magnetometers. Single centers allow for high spatial resolution field imaging but are limited in their magnetic field sensitivity to around 10 nT/Hz^(1/2) at room-temperature. Using defect center ensembles sensitivity can be scaled as N^(1/2) when N is the number of defects. In the present work we use an ensemble of 1e11 defect centers for sensing. By carefully eliminating all noise sources like laser intensity fluctuations, microwave amplitude and phase noise we achieve a photon shot noise limited field sensitivity of 0.9 pT/Hz^(1/2) at room-temperature with an effective sensor volume of 8.5e-4 mm^3. The smallest field we measured with our device is 100 fT. While this denotes the best diamond magnetometer sensitivity so far, further improvements using decoupling sequences and material optimization could lead to fT/Hz^(1/2) sensitivity.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
We operate a nitrogen vacancy (NV-) diamond magnetometer at ambient temperatures and study the dependence of its bandwidth on experimental parameters including optical and microwave excitation powers. We introduce an analytical theory that yields an explicit formula for the response of an ensemble of NV- spins to an oscillating magnetic field, such as in NMR applications. We measure a detection bandwidth of 1.6 MHz and a sensitivity of 4.6 nT/Hz^(1/2), unprecedented in a detector with this active volume and close to the photon shot noise limit of our experiment.
We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume $50 times 50 times 300$ microns^3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ~110 Hz in one second of acquisition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا