Do you want to publish a course? Click here

Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

234   0   0.0 ( 0 )
 Added by Victor Acosta
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume $50 times 50 times 300$ microns^3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ~110 Hz in one second of acquisition.



rate research

Read More

Quantum sensors based on optically active defects in diamond such as the nitrogen vacancy (NV) centre represent a promising platform for nanoscale sensing and imaging of magnetic, electric, temperature and strain fields. Enhancing the optical interface to such defects is key to improving the measurement sensitivity of these systems. Photonic nanostructures are often employed in the single emitter regime for this purpose, but their applicability to widefield sensing with NV ensembles remains largely unexplored. Here we fabricate and characterize closely-packed arrays of diamond nanopillars, each hosting its own dense, near-surface ensemble of NV centres. We explore the optimal geometry for diamond nanopillars hosting NV ensembles and realise enhanced spin and photoluminescence properties which lead to increased measurement sensitivities (greater than a factor of 3) when compared to unpatterned surfaces. Utilising the increased measurement sensitivity, we image the mechanical stress tensor in each nanopillar across the arrays and show the fabrication process has negligible impact on in-built stress compared to the unpatterned surface. Our results demonstrate that photonic nanostructuring of the diamond surface is a viable strategy for increasing the sensitivity of ensemble-based widefield sensing and imaging.
Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the door to practical applications of NV sensors for ZF magnetic sensing, such as ZF nuclear magnetic resonance, and investigation of magnetic fields in biological systems.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
125 - F. Hahl , L. Lindner , X. Vidal 2021
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors. Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity via increased signal strength and magnetic field contrast. In this work we experimentally demonstrate laser threshold magnetometry. We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532nm and resonantly seeded at 710nm. This enables amplification of the signal power by stimulated emission of 64%. We show the magnetic-field dependency of the amplification and thus, demonstrate magnetic-field dependent stimulated emission from an NV-centre ensemble. This emission shows a record contrast of 33% and a maximum output power in the mW regime. These advantages of coherent read-out of NV-centres pave the way for novel cavity and laser applications of quantum defects as well as diamond NV magnetic field sensors with significantly improved sensitivity for the health, research and mining sectors.
We demonstrate a robust, scale-factor-free vector magnetometer, which uses a closed-loop frequency-locking scheme to simultaneously track Zeeman-split resonance pairs of nitrogen-vacancy (NV) centers in diamond. Compared with open-loop methodologies, this technique is robust against fluctuations in temperature, resonance linewidth, and contrast; offers a three-order-of-magnitude increase in dynamic range; and allows for simultaneous interrogation of multiple transition frequencies. By directly detecting the resonance frequencies of NV centers aligned along each of the diamonds four tetrahedral crystallographic axes, we perform full vector reconstruction of an applied magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا