Do you want to publish a course? Click here

Electronic phase separation in topological surface states of rhombohedral graphite

110   0   0.0 ( 0 )
 Added by Artem Mishchenko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Of the two stable forms of graphite, hexagonal (HG) and rhombohedral (RG), the former is more common and has been studied extensively. RG is less stable, which so far precluded its detailed investigation, despite many theoretical predictions about the abundance of exotic interaction-induced physics. Advances in van der Waals heterostructure technology have now allowed us to make high-quality RG films up to 50 graphene layers thick and study their transport properties. We find that the bulk electronic states in such RG are gapped and, at low temperatures, electron transport is dominated by surface states. Because of topological protection, the surface states are robust and of high quality, allowing the observation of the quantum Hall effect, where RG exhibits phase transitions between gapless semimetallic phase and gapped quantum spin Hall phase with giant Berry curvature. An energy gap can also be opened in the surface states by breaking their inversion symmetry via applying a perpendicular electric field. Moreover, in RG films thinner than 4 nm, a gap is present even without an external electric field. This spontaneous gap opening shows pronounced hysteresis and other signatures characteristic of electronic phase separation, which we attribute to emergence of strongly-correlated electronic surface states.



rate research

Read More

Few layer graphene (FLG) has been recently intensively investigated for its variable electronic properties defined by a local atomic arrangement. While the most natural layers arrangement in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedral) stacking characterized by a relatively high energy barrier can also occur. When both stacking occur in the same FLG device this results in in-plane heterostructure with a domain wall (DW). We show that ABC stacking in FLG can be controllably and locally turned into ABA stacking by two following approaches. In the first approach, Joule heating was introduced and the transition was characterized by 2D-peak Raman spectra at a submicron spatial resolution. The observed transition was initiated at a small region and then the DW controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of laser pulses of 790 nm wavelength, while the transition was visualized by transmission electron microscopy in both diffraction and dark field modes. Also, with this approach, a DW was visualized in the dark-field imaging mode, at a nanoscale spatial resolution.
We use an exact analytical technique [Phys. Rev. B textbf{101}, 115405 (2020), Phys. Rev. B textbf{102}, 165117 (2020)] to recover the surface Greens functions for Bernal (ABA) and rhombohedral (ABC) graphite. For rhombohedral graphite we recover the predicted surface flat bands. For Bernal graphite we find that the surface state spectral function is similar to the bilayer one, but the trigonal warping effects are enhanced, and the surface quasiparticles have a much shorter lifetime. We subsequently use the T-matrix formalism to study the quasiparticle interference patterns generated on the surface of semi-infinite ABA and ABC graphite in the presence of impurity scattering. We compare our predictions to experimental STM data of impurity-localized states on the surface of Bernal graphite which appear to be in a good agreement with our calculations.
A point charge near the surface of a topological insulator (TI) with broken time-reversal symmetry is predicted to generate an image magnetic charge in addition to an image electric charge. We use scanning tunneling spectroscopy to study the image potential states (IPS) of the topological semimetal Sb(111) surface. We observe five IPS with discrete energy levels that are well described by a one-dimensional model. The spatial variation of the IPS energies and lifetimes near surface step edges shows the first local signature of resonant interband scattering between IPS, which suggests that image charges too may interact. Our work motivates the exploration of the TI surface geometry necessary to realize and manipulate a magnetic charge.
73 - Luis Brey 2006
By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, weakening the ferromagnetic coupling between the Mn ions. In this situation the ferromagnetic order of the Mn spins near the interface is unstable against antiferromagnetic CE correlations, and a separation between ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces can occur. We obtain that the insertion of extra layers of undoped manganite at the interface introduces extra carriers which reinforce the double exchange mechanism and suppress antiferromagnetic instabilities.
We report the observation of superconductivity in rhombohedral trilayer graphene electrostatically doped with holes. Superconductivity occurs in two distinct regions within the space of gate-tuned charge carrier density and applied electric displacement field, which we denote SC1 and SC2. The high sample quality allows for detailed mapping of the normal state Fermi surfaces by quantum oscillations, which reveal that in both cases superconductivity arises from a normal state described by an annular Fermi sea that is proximal to an isospin symmetry breaking transition where the Fermi surface degeneracy changes. The upper out-of-plane critical field $B_{Cperp}approx 10 mathrm{mT}$ for SC1 and $1mathrm{mT}$ for SC2, implying coherence lengths $xi$ of 200nm and 600nm, respectively. The simultaneous observation of transverse magnetic electron focusing implies a mean free path $ellgtrsim3.5mathrm{mu m}$. Superconductivity is thus deep in the clean limit, with the disorder parameter $d=xi/ell<0.1$. SC1 emerge from a paramagnetic normal state and is suppressed with in-plane magnetic fields in agreement with the Pauli paramagnetic limit. In contrast, SC2 emerges from a spin-polarized, valley-unpolarized half-metal. Measurements of the in-plane critical field show that this superconductor exceeds the Pauli limit by at least one order of magnitude. We discuss our results in light of several mechanisms including conventional phonon-mediated pairing, pairing due to fluctuations of the proximal isospin order, and intrinsic instabilities of the annular Fermi liquid. Our observation of superconductivity in a clean and structurally simple two-dimensional metal hosting a variety of gate tuned magnetic states may enable a new class of field-effect controlled mesoscopic electronic devices combining correlated electron phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا