Do you want to publish a course? Click here

Electronic Phase Separation in Manganite/Insulator Interfaces

74   0   0.0 ( 0 )
 Added by Luis Brey
 Publication date 2006
  fields Physics
and research's language is English
 Authors Luis Brey




Ask ChatGPT about the research

By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, weakening the ferromagnetic coupling between the Mn ions. In this situation the ferromagnetic order of the Mn spins near the interface is unstable against antiferromagnetic CE correlations, and a separation between ferromagnetic/metallic and antiferromagnetic/insulator phases at the interfaces can occur. We obtain that the insertion of extra layers of undoped manganite at the interface introduces extra carriers which reinforce the double exchange mechanism and suppress antiferromagnetic instabilities.



rate research

Read More

Electronic phase separation is crucial for the fascinating macroscopic properties of the LaAlO3/SrTiO3 (LAO/STO) paradigm oxide interface, including the coexistence of superconductivity and ferromagnetism. We investigate this phenomenon using angle-resolved photoelectron spectroscopy (ARPES) in the soft-X-ray energy range, where the enhanced probing depth combined with resonant photoexcitation allow access to fundamental electronic structure characteristics (momentum-resolved spectral function, dispersions and ordering of energy bands, Fermi surface) of buried interfaces. Our experiment uses X-ray irradiation of the LAO/STO interface to tune its oxygen deficiency, building up a dichotomic system where mobile weakly correlated Ti t2g-electrons co-exist with localized strongly correlated Ti eg-ones. The ARPES spectra dynamics under X-ray irradiation shows a gradual intensity increase under constant Luttinger count of the Fermi surface. This fact identifies electronic phase separation (EPS) where the mobile electrons accumulate in conducting puddles with fixed electronic structure embedded in an insulating host phase, and allows us to estimate the lateral fraction of these puddles. We discuss the physics of EPS invoking a theoretical picture of oxygen-vacancy clustering, promoted by the magnetism of the localized Ti eg-electrons, and repelling of the mobile t2g-electrons from these clusters. Our results on the irradiation-tuned EPS elucidate the intrinsic one taking place at the stoichiometric LAO/STO interfaces.
The effect of gold capping on magnetic and transport properties of optimally doped manganite thin films is studied. An extraordinary suppression of conductivity and magnetic properties occurs in epitaxial (001) La_0.67Sr_0.33MnO_3 (LSMO) films grown on SrTiO_3 upon deposition of 2 nm of Au: in the case of ultrathin films of LSMO (4 nm thick) the resistivity increases by four orders of magnitude while the Curie temperature decreases by 180 K. Zero-field 55Mn nuclear magnetic resonance reveals a significant reduction of ferromagnetic double-exchange mechanism in manganite films upon the gold capping. We find evidence for the formation of a 1.9-nm thick magnetic dead-layer at the Au/LSMO interface, associated with the creation of interfacial non double-exchange insulating phases.
LaAlO3/SrTiO3 ad LaTiO3/SrTiO3 interfaces are known to host a strongly inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work we present three unconventional electronic mechanisms of electronic phase separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide interfaces. Common to all three mechanisms is the dependence of some (interaction) potential on the 2DEGs density. We first consider a mechanism resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we point out that an EPS may also occur in the case of a density-dependent superconducting pairing interaction. Finally, we show that the confinement of the 2DEG to the interface by a density-dependent, self-consistent electrostatic potential can by itself cause an EPS.
We present a phenomenological model based on the thermodynamics of the phase separated state of manganites, accounting for its static and dynamic properties. Through calorimetric measurements on La$_{0.225}$Pr$_{0.40}$Ca$ _{0.375}$MnO$_{3}$ the low temperature free energies of the coexisting ferromagnetic and charge ordered phases are evaluated. The phase separated state is modeled by free energy densities uniformly spread over the sample volume. The calculations contemplate the out of equilibrium features of the coexisting phase regime, to allow a comparison between magnetic measurements and the predictions of the model. A phase diagram including the static and dynamic properties of the system is constructed, showing the existence of blocked and unblocked regimes which are characteristics of the phase separated state in manganites.
175 - Yin Shi , Long-Qing Chen 2020
From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium phase through transient electronic phase separation. This phase instability occurs as two inequalities between the first and the second derivatives of the free energy with respect to the order parameter are fulfilled. The dominant wavelength of the modulated phase is also derived. The computer simulation further confirms the theoretical derivation. Employing the pre-established phase-field model of VO$_2$, we show that this transient electronic phase separation may take place in VO$_2$ upon photoexcitation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا