No Arabic abstract
Habitability is a measure of an environments potential to support life, and a habitable exoplanet supports liquid water on its surface. However, a planets success in maintaining liquid water on its surface is the end result of a complex set of interactions between planetary, stellar, planetary system and even Galactic characteristics and processes, operating over the planets lifetime. In this chapter, we describe how we can now determine which exoplanets are most likely to be terrestrial, and the research needed to help define the habitable zone under different assumptions and planetary conditions. We then move beyond the habitable zone concept to explore a new framework that looks at far more characteristics and processes, and provide a comprehensive survey of their impacts on a planets ability to acquire and maintain habitability over time. We are now entering an exciting era of terrestiral exoplanet atmospheric characterization, where initial observations to characterize planetary composition and constrain atmospheres is already underway, with more powerful observing capabilities planned for the near and far future. Understanding the processes that affect the habitability of a planet will guide us in discovering habitable, and potentially inhabited, planets.
The search for exoplanetary life must encompass the complex geological processes reflected in an exoplanets atmosphere, or we risk reporting false positive and false negative detections. To do this, we must nurture the nascent discipline of exogeoscience to fully integrate astronomers, astrophysicists, geoscientists, oceanographers, atmospheric chemists and biologists. Increased funding for interdisciplinary research programs, supporting existing and future multidisciplinary research nodes, and developing research incubators is key to transforming true exogeoscience from an aspiration to a reality.
We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $lambda = 1 - 11$ $mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $lambda = 1 - 2.5$ $mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong temperature
Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve modeling, time averaging, residual permutations, and wavelet likelihood, and assesses their applicability and limitations to estimate parameters uncertainties. Chapter 5 describes the open-source Bayesian Atmospheric Radiative Transfer (BART) code to characterize exoplanet atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrains the atmospheric temperature and chemical-abundance profiles of exoplanets. I applied the BART code to the Hubble and Spitzer Space Telescope transit observations of the Neptune-sized planet HAT-P-11b. BART finds an atmosphere enhanced in heavy elements, constraining the water abundance to ~100 times that of the solar abundance.
While recently discovered exotic new planet-types have both challenged our imaginations and broadened our knowledge of planetary system workings, perhaps the most compelling objective of exoplanet science is to detect and characterize habitable and possibly inhabited worlds orbiting in other star systems. For the foreseeable future, characterizations of extrasolar planets will be made via remote sensing of planetary spectroscopic and temporal signals, along with careful fitting of this data to advanced models of planets and their atmospheres. Terrestrial planets are small and significantly more challenging to observe compared to their larger gaseous brethren; however observatories coming on-line in the coming decade will begin to allow their characterization. Still, it is not enough to invest only in observational endeavors. Comprehensive modeling of planetary atmospheres is required in order to fully understand what it is that our grand telescopes see in the night-sky. In our quest to characterize habitable, and possibly inhabited worlds, 3D general circulation models (GCMs) should be used to evaluate potential climate states and their associated temporal and spatial dependent observable signals. 3D models allow for coupled, self-consistent, multi-dimensional simulations, which can realistically simulate the climates of terrestrial extrasolar planets. A complete theoretical understanding of terrestrial exoplanetary atmospheres, gained through comprehensive 3D modeling, is critical for interpreting spectra of exoplanets taken from current and planned instruments, and is critical for designing future missions that aim to measure spectra of potentially habitable exoplanets as one of their key science goals. We recommend continued institutional support for 3D GCM modeling teams that focus on planetary and exoplanetary applications.
We present spectro-photometry spanning 1-5 $mu$m of 51 Eridani b, a 2-10 M$_text{Jup}$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new $K1$ (1.90-2.19 $mu$m) and $K2$ (2.10-2.40 $mu$m) spectra taken with the Gemini Planet Imager as well as an updated $L_P$ (3.76 $mu$m) and new $M_S$ (4.67 $mu$m) photometry from the NIRC2 Narrow camera. The new data were combined with $J$ (1.13-1.35 $mu$m) and $H$ (1.50-1.80 $mu$m) spectra from the discovery epoch with the goal of better characterizing the planet properties. 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4-T8) and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud free and patchy/intermediate opacity clouds. Model fits suggest that 51 Eri b has an effective temperature ranging between 605-737 K, a solar metallicity, a surface gravity of $log$(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the SED. From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 ($log L/L_{odot}$), leaving 51 Eri b in the unique position as being one of the only directly imaged planet consistent with having formed via cold-start scenario. Comparisons of the planet SED against warm-start models indicates that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M$_{oplus}$.