No Arabic abstract
While recently discovered exotic new planet-types have both challenged our imaginations and broadened our knowledge of planetary system workings, perhaps the most compelling objective of exoplanet science is to detect and characterize habitable and possibly inhabited worlds orbiting in other star systems. For the foreseeable future, characterizations of extrasolar planets will be made via remote sensing of planetary spectroscopic and temporal signals, along with careful fitting of this data to advanced models of planets and their atmospheres. Terrestrial planets are small and significantly more challenging to observe compared to their larger gaseous brethren; however observatories coming on-line in the coming decade will begin to allow their characterization. Still, it is not enough to invest only in observational endeavors. Comprehensive modeling of planetary atmospheres is required in order to fully understand what it is that our grand telescopes see in the night-sky. In our quest to characterize habitable, and possibly inhabited worlds, 3D general circulation models (GCMs) should be used to evaluate potential climate states and their associated temporal and spatial dependent observable signals. 3D models allow for coupled, self-consistent, multi-dimensional simulations, which can realistically simulate the climates of terrestrial extrasolar planets. A complete theoretical understanding of terrestrial exoplanetary atmospheres, gained through comprehensive 3D modeling, is critical for interpreting spectra of exoplanets taken from current and planned instruments, and is critical for designing future missions that aim to measure spectra of potentially habitable exoplanets as one of their key science goals. We recommend continued institutional support for 3D GCM modeling teams that focus on planetary and exoplanetary applications.
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the Newtonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.
The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivates a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial planets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets orbiting both Sun-like and M-dwarf stars over a wide swath of possible planetary parameters, including the planetary rotation period, surface pressure, incident stellar flux, surface gravity, planetary radius, and cloud particle size. We do so using a general circulation model (GCM) that includes non-grey radiative transfer and the effects of clouds. The results from this suite of simulations generally show qualitatively similar dependencies of circulation and climate on planetary parameters as idealized GCMs, with quantitative differences due to the inclusion of additional model physics. Notably, we find that the effective cloud particle size is a key unknown parameter that can greatly affect the climate of terrestrial exoplanets. We confirm a transition between low and high dayside cloud coverage of synchronously rotating terrestrial planets with increasing rotation period. We determine that this cloud transition is due to eddy-driven convergence near the substellar point and should not be parameterization-dependent. Finally, we compute full-phase light curves from our simulations of planets orbiting M-dwarf stars, finding that changing incident stellar flux and rotation period affect observable properties of terrestrial exoplanets. Our GCM results can guide expectations for planetary climate over the broad range of possible terrestrial exoplanets that will be observed with future space telescopes.