No Arabic abstract
We present spectro-photometry spanning 1-5 $mu$m of 51 Eridani b, a 2-10 M$_text{Jup}$ planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new $K1$ (1.90-2.19 $mu$m) and $K2$ (2.10-2.40 $mu$m) spectra taken with the Gemini Planet Imager as well as an updated $L_P$ (3.76 $mu$m) and new $M_S$ (4.67 $mu$m) photometry from the NIRC2 Narrow camera. The new data were combined with $J$ (1.13-1.35 $mu$m) and $H$ (1.50-1.80 $mu$m) spectra from the discovery epoch with the goal of better characterizing the planet properties. 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4-T8) and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud free and patchy/intermediate opacity clouds. Model fits suggest that 51 Eri b has an effective temperature ranging between 605-737 K, a solar metallicity, a surface gravity of $log$(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the SED. From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 ($log L/L_{odot}$), leaving 51 Eri b in the unique position as being one of the only directly imaged planet consistent with having formed via cold-start scenario. Comparisons of the planet SED against warm-start models indicates that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M$_{oplus}$.
The PAH model predicts many weak emission features in the 1-5 $mu$m region that can resolve significant questions that it has faced since its inception in the mid-80s. These features contain fundamental information about the PAH population that is inaccessible via the much stronger PAH bands in the 5-20 $mu$m region. Apart from the 3.3 $mu$m band and plateau, PAH spectroscopy across most of the 1-5 $mu$m region has been unexplored due to its low intrinsic intensity. ISO and Akari covered some of this wavelength range, but lacked the combined sensitivity and resolution to measure the predicted bands with sufficient fidelity. The spectroscopic capabilities of the NIRSpec instrument on board JWST will make it possible to measure and fully characterize many of the PAH features expected in this region. These include the fundamental, overtone and combination C-D and C$equiv$N stretching bands of deuterated PAHs, cyano-PAHs (PAH-C$equiv$ N), and the overtones and combinations of the strong PAH bands that dominate the 5-20 $mu$m region. These bands will reveal the amount of D tied up in PAHs, the PAH D/H ratio, the D distribution between PAH aliphatic and aromatic subcomponents, and delineate key stages in PAH formation and evolution on an object-by-object basis and within extended objects. If cyano-PAHs are present, these bands will also reveal the amount of cyano groups tied up in PAHs, determine the N/C ratio within that PAH subset, and distinguish between the bands near 4.5 $mu$m that arise from CD versus C$equiv$N.
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric composition and luminosity, which is influenced by their formation mechanism. Using the Gemini Planet Imager, we discovered a planet orbiting the $sim$20 Myr-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water vapor absorption. Modeling of the spectra and photometry yields a luminosity of L/LS=1.6-4.0 x 10-6 and an effective temperature of 600-750 K. For this age and luminosity, hot-start formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the cold- start core accretion process that may have formed Jupiter.
Habitability is a measure of an environments potential to support life, and a habitable exoplanet supports liquid water on its surface. However, a planets success in maintaining liquid water on its surface is the end result of a complex set of interactions between planetary, stellar, planetary system and even Galactic characteristics and processes, operating over the planets lifetime. In this chapter, we describe how we can now determine which exoplanets are most likely to be terrestrial, and the research needed to help define the habitable zone under different assumptions and planetary conditions. We then move beyond the habitable zone concept to explore a new framework that looks at far more characteristics and processes, and provide a comprehensive survey of their impacts on a planets ability to acquire and maintain habitability over time. We are now entering an exciting era of terrestiral exoplanet atmospheric characterization, where initial observations to characterize planetary composition and constrain atmospheres is already underway, with more powerful observing capabilities planned for the near and far future. Understanding the processes that affect the habitability of a planet will guide us in discovering habitable, and potentially inhabited, planets.
Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object to the small sample of less than 20 transiting brown dwarfs. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multi-colour photometric observations, imaging and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. We report the discovery and characterisation of a transiting brown dwarf in a 5.17 day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15+/-0.08 M$_odot$, a stellar radius of 1.41+/-0.05 R$_odot$, and an age of 5.1+/-0.9 Gyr. The mass and radius of the companion brown dwarf are 51+/-2 MJ and 0.83+/-0.03 RJ, respectively, corresponding to a mean density of 108+15-13 g cm-3. EPIC 212036875 b is a rare object that resides in the brown dwarf desert. In the mass-density diagram for planets, brown dwarfs and stars, we find that all giant planets and brown dwarfs follow the same trend from ~0.3 MJ to the turn-over to hydrogen burning stars at ~73 MJ. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models, as well as the empirical fit. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarfs radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter which implies a circularisation timescale of >23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf.
The study of exoplanet atmospheres is essential to understand the formation, evolution and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-the-art spectrographs at low- and high-spectral resolution is key to our understanding of atmospheric structure and composition. Two transits of the close-in sub Saturn-mass planet,WASP-127b, have been observed with ESPRESSO in the frame of the Guaranteed Time Observations Consortium. Transit observations allow us to study simultaneously the system architecture and the exoplanet atmosphere. We found that this planet is orbiting its slowly rotating host star (veq sin(i)=0.53+/-0.07 km/s) on a retrograde misaligned orbit (lambda=-128.41+/-5.60 deg). We detected the sodium line core at the 9-sigma confidence level with an excess absorption of 0.3+/-0.04%, a blueshift of 2.7+/-0.79 km/s and a FWHM of 15.18+/-1.75 km/s. However, we did not detect the presence of other atomic species but set upper-limits of only few scale heights. Finally, we put a 3-sigma upper limit, to the average depth of the 1600 strongest water lines at equilibrium temperature in the visible band, of 38 ppm. This constrains the cloud-deck pressure between 0.3 and 0.5 mbar by combining our data with low-resolution data in the near-infrared and models computed for this planet. To conclude, WASP-127b, with an age of about 10 Gyr, is an unexpected exoplanet by its orbital architecture but also by the small extension of its sodium atmosphere (~7 scale heights). ESPRESSO allows us to take a step forward in the detection of weak signals, thus bringing strong constraints on the presence of clouds in exoplanet atmospheres. The framework proposed in this work can be applied to search for molecular species and study cloud-decks in other exoplanets.