Do you want to publish a course? Click here

Efficient Dialogue State Tracking by Selectively Overwriting Memory

96   0   0.0 ( 0 )
 Added by Sungdong Kim
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent works in dialogue state tracking (DST) focus on an open vocabulary-based setting to resolve scalability and generalization issues of the predefined ontology-based approaches. However, they are inefficient in that they predict the dialogue state at every turn from scratch. Here, we consider dialogue state as an explicit fixed-sized memory and propose a selectively overwriting mechanism for more efficient DST. This mechanism consists of two steps: (1) predicting state operation on each of the memory slots, and (2) overwriting the memory with new values, of which only a few are generated according to the predicted state operations. Our method decomposes DST into two sub-tasks and guides the decoder to focus only on one of the tasks, thus reducing the burden of the decoder. This enhances the effectiveness of training and DST performance. Our SOM-DST (Selectively Overwriting Memory for Dialogue State Tracking) model achieves state-of-the-art joint goal accuracy with 51.72% in MultiWOZ 2.0 and 53.01% in MultiWOZ 2.1 in an open vocabulary-based DST setting. In addition, we analyze the accuracy gaps between the current and the ground truth-given situations and suggest that it is a promising direction to improve state operation prediction to boost the DST performance.

rate research

Read More

This paper describes our approach to DSTC 9 Track 2: Cross-lingual Multi-domain Dialog State Tracking, the task goal is to build a Cross-lingual dialog state tracker with a training set in rich resource language and a testing set in low resource language. We formulate a method for joint learning of slot operation classification task and state tracking task respectively. Furthermore, we design a novel mask mechanism for fusing contextual information about dialogue, the results show the proposed model achieves excellent performance on DSTC Challenge II with a joint accuracy of 62.37% and 23.96% in MultiWOZ(en - zh) dataset and CrossWOZ(zh - en) dataset, respectively.
113 - Su Zhu , Jieyu Li , Lu Chen 2020
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. To encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can obtain new state-of-the-art performance of the open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.
Recently, a more challenging state tracking task, Audio-Video Scene-Aware Dialogue (AVSD), is catching an increasing amount of attention among researchers. Different from purely text-based dialogue state tracking, the dialogue in AVSD contains a sequence of question-answer pairs about a video and the final answer to the given question requires additional understanding of the video. This paper interprets the AVSD task from an open-domain Question Answering (QA) point of view and proposes a multimodal open-domain QA system to deal with the problem. The proposed QA system uses common encoder-decoder framework with multimodal fusion and attention. Teacher forcing is applied to train a natural language generator. We also propose a new data augmentation approach specifically under QA assumption. Our experiments show that our model and techniques bring significant improvements over the baseline model on the DSTC7-AVSD dataset and demonstrate the potentials of our data augmentation techniques.
Dialogue state tracking (DST) is a pivotal component in task-oriented dialogue systems. While it is relatively easy for a DST model to capture belief states in short conversations, the task of DST becomes more challenging as the length of a dialogue increases due to the injection of more distracting contexts. In this paper, we aim to improve the overall performance of DST with a special focus on handling longer dialogues. We tackle this problem from three perspectives: 1) A model designed to enable hierarchical slot status prediction; 2) Balanced training procedure for generic and task-specific language understanding; 3) Data perturbation which enhances the models ability in handling longer conversations. We conduct experiments on the MultiWOZ benchmark, and demonstrate the effectiveness of each component via a set of ablation tests, especially on longer conversations.
Recently, resources and tasks were proposed to go beyond state tracking in dialogue systems. An example is the frame tracking task, which requires recording multiple frames, one for each user goal set during the dialogue. This allows a user, for instance, to compare items corresponding to different goals. This paper proposes a model which takes as input the list of frames created so far during the dialogue, the current user utterance as well as the dialogue acts, slot types, and slot values associated with this utterance. The model then outputs the frame being referenced by each triple of dialogue act, slot type, and slot value. We show that on the recently published Frames dataset, this model significantly outperforms a previously proposed rule-based baseline. In addition, we propose an extensive analysis of the frame tracking task by dividing it into sub-tasks and assessing their difficulty with respect to our model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا