Do you want to publish a course? Click here

Estimating the molecular gas mass of low-redshift galaxies from a combination of mid-infrared luminosity and optical properties

257   0   0.0 ( 0 )
 Added by Yang Gao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present CO(J=1-0) and/or CO(J=2-1) spectroscopy for 31 galaxies selected from the ongoing MaNGA survey, obtained with multiple telescopes. This sample is combined with CO observations from the literature to study the correlation of the CO luminosities ($L_{rm CO(1-0)}$) with the mid-infrared luminosities at 12 ($L_{12 mu m}$) and 22 $mu$m ($L_{rm 22 mu m}$), as well as the dependence of the residuals on a variety of galaxy properties. The correlation with $L_{rm 12 mu m}$ is tighter and more linear, but galaxies with relatively low stellar masses and blue colors fall significantly below the mean $L_{rm CO(1-0)}-L_{rm 12mu m}$ relation. We propose a new estimator of the CO(1-0) luminosity (and thus the total molecular gas mass) that is a linear combination of three parameters: $L_{rm 12 mu m}$, $M_ast$ and $g-r$. We show that, with a scatter of only 0.18 dex in log $(L_{rm CO(1-0)})$, this estimator provides unbiased estimates for galaxies of different properties and types. An immediate application of this estimator to a compiled sample of galaxies with only CO(J=2-1) observations yields a distribution of the CO(J=2-1) to CO(J=1-0) luminosity ratios ($R21$) that agrees well with the distribution of real observations, in terms of both the median and the shape. Application of our estimator to the current MaNGA sample reveals a gas-poor population of galaxies that are predominantly early-type and show no correlation between molecular gas-to-stellar mass ratio and star formation rate, in contrast to gas-rich galaxies. We also provide alternative estimators with similar scatters, based on $r$ and/or $z$ band luminosities instead of $M_ast$. These estimators serve as cheap and convenient $M_{rm mol}$ proxies to be potentially applied to large samples of galaxies, thus allowing statistical studies of gas-related processes of galaxies.



rate research

Read More

Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and luminosities in the local universe. In this work we present results from a survey with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) to detect CO(1-0) emission in LBAs, in order to analyse the properties of the molecular gas in these galaxies. Our results show that LBAs follow the same Schmidt-Kennicutt law as local galaxies. On the other hand, they have higher gas fractions (up to 66%) and faster gas depletion time-scales (below 1 Gyr). These characteristics render these objects more akin to high-redshift star-forming galaxies. We conclude that LBAs are a great nearby laboratory for studying the cold interstellar medium in low-metallicity, UV-luminous compact star-forming galaxies.
135 - D. Asmus , S. F. Honig , P. Gandhi 2011
We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.
We present the observed correlations between rest-frame 8, 24, 70 and 160 um monochromatic luminosities and measured total infrared luminosities L_IR of galaxies detected by Spitzer. Our sample consists of 372 star-forming galaxies with individual detections and flux measurements at 8, 24, 70 and 160 um. We have spectroscopic redshifts for 93% of these sources, and accurate photometric redshifts for the remainder. We also used a stacking analysis to measure the IR fluxes of fainter sources at higher redshifts. We show that the monochromatic mid and far-infrared luminosities are strongly correlated with the total infrared luminosity and our stacking analysis confirms that these correlations also hold at higher redshifts. We provide relations between monochromatic luminosities and total infrared luminosities L_IR that should be reliable up to z~2 (z~1.1) for ULIRGs (LIRGs). In particular, we can predict L_IR with accuracies of 37% and 54% from the 8 and 24 um fluxes, while the best tracer is the 70 um flux. Combining bands leads to slightly more accurate estimates. For example, combining the 8 and 24 um luminosities predicts L_IR with an accuracy of 34%. Our results are generally compatible with previous studies, and the small changes are probably due to differences in the sample selection criteria. We can rule out strong evolution in dust properties with redshift up to z~1. Finally, we show that infrared and sub-millimeter observations are complementary means of building complete samples of star-forming galaxies, with the former being more sensitive for z<~2 and the latter at higher z>~2.
Using data from the Wide-field Infrared Survey Explorer (WISE) we show that the mid infrared (MIR) colors of low-luminosity AGNs (LLAGNs) are significanlty different from those of post-asymptotic giant branch stars (PAGBs). This is due to a difference in spectral energy distribution (SEDs), the LLAGNs showing a flat component due to an AGN. Consistent with this interpretation we show that in a MIR color-color diagram the LINERs and the Seyfert~2s follow a power law with specific colors that allow to distinguish them from each other, and from star forming galaxies, according to their present level of star formation. Based on this result we present a new diagnostic diagram in the MIR that confirms the classification obtained in the optical using standard diagnostic diagrams, clearly identifying LINERs and LLAGNs as genuine AGNs.
We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (HI and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the HI and H2 content of IllustrisTNG galaxies to observations. We mostly restrict this comparison to $z approx 0$ and consider six observational metrics: the overall abundance of HI and H2, their mass functions, gas fractions as a function of stellar mass, the correlation between H2 and star formation rate, the spatial distribution of gas, and the correlation between gas content and morphology. We find generally good agreement between simulations and observations, particularly for the gas fractions and the HI mass-size relation. The H2 mass correlates with star formation rate as expected, revealing an almost constant depletion time that evolves up to z = 2 as observed. However, we also discover a number of tensions with varying degrees of significance, including an overestimate of the total neutral gas abundance at z = 0 by about a factor of two and a possible excess of satellites with no or very little neutral gas. These conclusions are robust to the modelling of the HI/H2 transition. In terms of their neutral gas properties, the IllustrisTNG simulations represent an enormous improvement over the original Illustris run. All data used in this paper are publicly available as part of the IllustrisTNG data release.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا