Do you want to publish a course? Click here

Atomic and molecular gas in IllustrisTNG galaxies at low redshift

90   0   0.0 ( 0 )
 Added by Benedikt Diemer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (HI and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the HI and H2 content of IllustrisTNG galaxies to observations. We mostly restrict this comparison to $z approx 0$ and consider six observational metrics: the overall abundance of HI and H2, their mass functions, gas fractions as a function of stellar mass, the correlation between H2 and star formation rate, the spatial distribution of gas, and the correlation between gas content and morphology. We find generally good agreement between simulations and observations, particularly for the gas fractions and the HI mass-size relation. The H2 mass correlates with star formation rate as expected, revealing an almost constant depletion time that evolves up to z = 2 as observed. However, we also discover a number of tensions with varying degrees of significance, including an overestimate of the total neutral gas abundance at z = 0 by about a factor of two and a possible excess of satellites with no or very little neutral gas. These conclusions are robust to the modelling of the HI/H2 transition. In terms of their neutral gas properties, the IllustrisTNG simulations represent an enormous improvement over the original Illustris run. All data used in this paper are publicly available as part of the IllustrisTNG data release.

rate research

Read More

Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and luminosities in the local universe. In this work we present results from a survey with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) to detect CO(1-0) emission in LBAs, in order to analyse the properties of the molecular gas in these galaxies. Our results show that LBAs follow the same Schmidt-Kennicutt law as local galaxies. On the other hand, they have higher gas fractions (up to 66%) and faster gas depletion time-scales (below 1 Gyr). These characteristics render these objects more akin to high-redshift star-forming galaxies. We conclude that LBAs are a great nearby laboratory for studying the cold interstellar medium in low-metallicity, UV-luminous compact star-forming galaxies.
We study the structural evolution of isolated star-forming galaxies in the Illustris TNG100-1 hydrodynamical simulation, with a focus on investigating the growth of the central core density within 2 kpc ($Sigma_{*,2kpc}$) in relation to total stellar mass ($M_*$) at z < 0.5. First, we show that several observational trends in the $Sigma_{*,2kpc}$-$M_*$ plane are qualitatively reproduced in IllustrisTNG, including the distributions of AGN, star forming galaxies, quiescent galaxies, and radial profiles of stellar age, sSFR, and metallicity. We find that galaxies with dense cores evolve parallel to the $Sigma_{*,2kpc}$-$M_*$ relation, while galaxies with diffuse cores evolve along shallower trajectories. We investigate possible drivers of rapid growth in $Sigma_{*,2kpc}$ compared to $M_*$. Both the current sSFR gradient and the BH accretion rate are indicators of past core growth, but are not predictors of future core growth. Major mergers (although rare in our sample; $sim$10%) cause steeper core growth, except for high mass ($M_*$ >$sim$ $10^{10} M_{odot}$) mergers, which are mostly dry. Disc instabilities, as measured by the fraction of mass with Toomre Q < 2, are not predictive of rapid core growth. Instead, rapid core growth results in more stable discs. The cumulative black hole feedback history sets the maximum rate of core growth, preventing rapid growth in high-mass galaxies ($M_*$ >$sim$ $10^{9.5} M_{odot}$). For massive galaxies the total specific angular momentum of accreting gas is the most important predictor of future core growth. Our results suggest that the angular momentum of accreting gas controls the slope, width and zero-point evolution of the $Sigma_{*,2kpc}$-$M_*$ relation.
A series of gravitational instabilities in a circumnuclear gas disk (CND) are required to trigger gas transport to a central supermassive black hole (SMBH) and ignite Active Galactic Nuclei (AGNs). A test of this scenario is to investigate whether an enhanced molecular gas mass surface density ($Sigma_{rm mol}$) is found in the CND-scale of quasars relative to a comparison sample of inactive galaxies. Here we performed sub-kpc resolution CO(2-1) observations with ALMA of four low-redshift ($z sim 0.06$), luminous ($sim 10^{45}$ erg s$^{-1}$) quasars with each matched to a different star-forming galaxy, having similar redshift, stellar mass, and star-formation rate. We detected CO(2-1) emission from all quasars, which show diverse morphologies. Contrary to expectations, $Sigma_{rm mol}$ of the quasar sample, computed from the CO(2-1) luminosity, tends to be smaller than the comparison sample at $r < 500$ pc; there is no systematic enhancement of $Sigma_{rm mol}$ in our quasars. We discuss four possible scenarios that would explain the lower molecular gas content (or CO(2-1) luminosity as an actual observable) at the CND-scale of quasars, i.e., AGN-driven outflows, gas-rich minor mergers, time-delay between the onsets of a starburst-phase and a quasar-phase, and X-ray-dominated region (XDR) effects on the gas chemical abundance and excitation. While not extensively discussed in the literature, XDR effects can have an impact on molecular mass measurements particularly in the vicinity of luminous quasar nuclei; therefore higher resolution molecular gas observations, which are now viable using ALMA, need to be considered.
319 - Marcel Neeleman 2014
A new method is used to measure the physical conditions of the gas in damped Lyman-alpha systems (DLAs). Using high resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper to lower fine-structure levels of the ground state of C II and Si II. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov Chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5 % of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100 cm-3 and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log(P/k) = 3.4 [K cm-3], which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsec. We show that the majority of the systems are consistent with having densities significantly higher than expected from a purely canonical WNM, indicating that significant quantities of dense gas (i.e. n_H > 0.1 cm-3) are required to match observations. Finally, we identify 8 systems with positive detections of Si II*. These systems have pressures (P/k) in excess of 20000 K cm-3, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.
Brightest cluster galaxies (BCGs) are excellent laboratories to study galaxy evolution in dense Mpc-scale environments. We have observed in CO(1-0), CO(2-1), CO(3-2), or CO(4-3), with the IRAM-30m, 18 BCGs at $zsim0.2-0.9$ that are drawn from the CLASH survey. Our sample includes RX1532, which is our primary target, being among the BCGs with the highest star formation rate (SFR$gtrsim100~M_odot$/yr) in the CLASH sample. We unambiguously detected both CO(1-0) and CO(3-2) in RX1532, yielding a large reservoir of molecular gas, $M_{H_2}=(8.7pm1.1)times10^{10}~M_odot$, and a high level of excitation $r_{31}=0.75pm0.12$. A morphological analysis of the HST I-band image of RX1532 reveals the presence of clumpy substructures both within and outside the half-light radius $r_e=(11.6pm0.3)$ kpc, similarly to those found independently both in ultraviolet and in H$_alpha$ in previous work. We tentatively detected CO(1-0) or CO(2-1) in four other BCGs, with molecular gas reservoirs in the range $M_{H_2}=2times10^{10-11} M_odot$. For the remaining 13 BCGs we set robust upper limits of $M_{H_2}/M_starlesssim0.1$, which are among the lowest molecular gas to stellar mass ratios found for distant ellipticals and BCGs. By comparison with distant cluster galaxies observed in CO our study shows that RX1532 ($M_{H_2}/M_star = 0.40pm0.05$) belongs to the rare population of star forming and gas-rich BCGs in the distant universe. By using available X-ray based estimates of the central intra-cluster medium entropy, we show that the detection of large reservoirs of molecular gas $M_{H_2}gtrsim10^{10}~M_odot$ in distant BCGs is possible when the two conditions are met: i) high SFR and ii) low central entropy, which favors the condensation and the inflow of gas onto the BCGs themselves, similarly to what has been previously found for some local BCGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا