We show any slightly degenerate weakly group-theoretical fusion category admits a minimal extension. Let $d$ be a positive square-free integer, given a weakly group-theoretical non-degenerate fusion category $mathcal{C}$, assume that $text{FPdim}(mathcal{C})=nd$ and $(n,d)=1$. If $(text{FPdim}(X)^2,d)=1$ for all simple objects $X$ of $mathcal{C}$, then we show that $mathcal{C}$ contains a non-degenerate fusion subcategory $mathcal{C}(mathbb{Z}_d,q)$. In particular, we obtain that integral fusion categories of FP-dimensions $p^md$ such that $mathcal{C}subseteq text{sVec}$ are nilpotent and group-theoretical, where $p$ is a prime and $(p,d)=1$.
We prove a version of the Jordan-H older theorem in the context of weakly group-theoretical fusion categories. This allows us to introduce the composition factors and the length of such a fusion category C, which are in fact Morita invariants of C.
We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${mathcal C}$ to be equivalent. This concludes the classification of such module categories.
The semidirect product of a finitely generated group dual with the symmetric group can be described through so-called group-theoretical categories of partitions (covers only a special case; due to Raum--Weber, 2015) and skew categories of partitions (more general; due to Maassen, 2018). We generalize these results to the case of graph categories, which allows to replace the symmetric group by the group of automorphisms of some graph.
We show that the core of a weakly group-theoretical braided fusion category $C$ is equivalent as a braided fusion category to a tensor product $B boxtimes D$, where $D$ is a pointed weakly anisotropic braided fusion category, and $B cong vect$ or $B$ is an Ising braided category. In particular, if $C$ is integral, then its core is a pointed weakly anisotropic braided fusion category. As an application we give a characterization of the solvability of a weakly group-theoretical braided fusion category. We also prove that an integral modular category all of whose simple objects have Frobenius-Perron dimension at most 2 is necessarily group-theoretical.