Do you want to publish a course? Click here

On the Equivalence of Module Categories over a Group-Theoretical Fusion Category

123   0   0.0 ( 0 )
 Added by Sonia Natale
 Publication date 2016
  fields
and research's language is English
 Authors Sonia Natale




Ask ChatGPT about the research

We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${mathcal C}$ to be equivalent. This concludes the classification of such module categories.



rate research

Read More

86 - Sonia Natale 2017
We show that the core of a weakly group-theoretical braided fusion category $C$ is equivalent as a braided fusion category to a tensor product $B boxtimes D$, where $D$ is a pointed weakly anisotropic braided fusion category, and $B cong vect$ or $B$ is an Ising braided category. In particular, if $C$ is integral, then its core is a pointed weakly anisotropic braided fusion category. As an application we give a characterization of the solvability of a weakly group-theoretical braided fusion category. We also prove that an integral modular category all of whose simple objects have Frobenius-Perron dimension at most 2 is necessarily group-theoretical.
We prove that representations of the braid groups coming from weakly group-theoretical braided fusion categories have finite images.
137 - Victor Ostrik , Zhiqiang Yu 2021
We show any slightly degenerate weakly group-theoretical fusion category admits a minimal extension. Let $d$ be a positive square-free integer, given a weakly group-theoretical non-degenerate fusion category $mathcal{C}$, assume that $text{FPdim}(mathcal{C})=nd$ and $(n,d)=1$. If $(text{FPdim}(X)^2,d)=1$ for all simple objects $X$ of $mathcal{C}$, then we show that $mathcal{C}$ contains a non-degenerate fusion subcategory $mathcal{C}(mathbb{Z}_d,q)$. In particular, we obtain that integral fusion categories of FP-dimensions $p^md$ such that $mathcal{C}subseteq text{sVec}$ are nilpotent and group-theoretical, where $p$ is a prime and $(p,d)=1$.
162 - Sonia Natale 2015
We prove a version of the Jordan-H older theorem in the context of weakly group-theoretical fusion categories. This allows us to introduce the composition factors and the length of such a fusion category C, which are in fact Morita invariants of C.
We generalize the definition of an exact sequence of tensor categories due to Brugui`eres and Natale, and introduce a new notion of an exact sequence of (finite) tensor categories with respect to a module category. We give three definitions of this notion and show their equivalence. In particular, the Deligne tensor product of tensor categories gives rise to an exact sequence in our sense. We also show that the dual to an exact sequence in our sense is again an exact sequence. This generalizes the corresponding statement for exact sequences of Hopf algebras. Finally, we show that the middle term of an exact sequence is semisimple if so are the other two terms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا