Do you want to publish a course? Click here

ICU Delirium Prediction Models: A Systematic Review

73   0   0.0 ( 0 )
 Added by Azra Bihorac
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Purpose: Summarize ICU delirium prediction models published within the past five years. Methods: Electronic searches were conducted in April 2019 using PubMed, Embase, Cochrane Central, Web of Science, and CINAHL to identify peer reviewed studies published in English during the past five years that specifically addressed the development, validation, or recalibration of delirium prediction models in adult ICU populations. Data were extracted using CHARMS checklist elements for systematic reviews of prediction studies, including the following characteristics: study design, participant descriptions and recruitment methods, predicted outcomes, a priori candidate predictors, sample size, model development, model performance, study results, interpretation of those results, and whether the study included missing data. Results: Twenty studies featuring 26 distinct prediction models were included. Model performance varied greatly, as assessed by AUROC (0.68-0.94), specificity (56.5%-92.5%), and sensitivity (59%-90.9%). Most models used data collected from a single time point or window to predict the occurrence of delirium at any point during hospital or ICU admission, and lacked mechanisms for providing pragmatic, actionable predictions to clinicians. Conclusions: Although most ICU delirium prediction models have relatively good performance, they have limited applicability to clinical practice. Most models were static, making predictions based on data collected at a single time-point, failing to account for fluctuating conditions during ICU admission. Further research is needed to create clinically relevant dynamic delirium prediction models that can adapt to changes in individual patient physiology over time and deliver actionable predictions to clinicians.



rate research

Read More

Background: Unsupervised machine learners have been increasingly applied to software defect prediction. It is an approach that may be valuable for software practitioners because it reduces the need for labeled training data. Objective: Investigate the use and performance of unsupervised learning techniques in software defect prediction. Method: We conducted a systematic literature review that identified 49 studies containing 2456 individual experimental results, which satisfied our inclusion criteria published between January 2000 and March 2018. In order to compare prediction performance across these studies in a consistent way, we (re-)computed the confusion matrices and employed the Matthews Correlation Coefficient (MCC) as our main performance measure. Results: Our meta-analysis shows that unsupervised models are comparable with supervised models for both within-project and cross-project prediction. Among the 14 families of unsupervised model, Fuzzy CMeans (FCM) and Fuzzy SOMs (FSOMs) perform best. In addition, where we were able to check, we found that almost 11% (262/2456) of published results (contained in 16 papers) were internally inconsistent and a further 33% (823/2456) provided insufficient details for us to check. Conclusion: Although many factors impact the performance of a classifier, e.g., dataset characteristics, broadly speaking, unsupervised classifiers do not seem to perform worse than the supervised classifiers in our review. However, we note a worrying prevalence of (i) demonstrably erroneous experimental results, (ii) undemanding benchmarks and (iii) incomplete reporting. We therefore encourage researchers to be comprehensive in their reporting.
Context: Software testing plays an essential role in product quality improvement. For this reason, several software testing models have been developed to support organizations. However, adoption of testing process models inside organizations is still sporadic, with a need for more evidence about reported experiences. Aim: Our goal is to identify results gathered from the application of software testing models in organizational contexts. We focus on characteristics such as the context of use, practices applied in different testing process phases, and reported benefits & drawbacks. Method: We performed a Systematic Literature Review (SLR) focused on studies about the application of software testing processes, complemented by results from previous reviews. Results: From 35 primary studies and survey-based articles, we collected 17 testing models. Although most of the existing models are described as applicable to general contexts, the evidence obtained from the studies shows that some models are not suitable for all enterprise sizes, and inadequate for specific domains. Conclusion: The SLR evidence can serve to compare different software testing models for applicability inside organizations. Both benefits and drawbacks, as reported in the surveyed cases, allow getting a better view of the strengths and weaknesses of each model.
Nowadays, with the rise of Internet access and mobile devices around the globe, more people are using social networks for collaboration and receiving real-time information. Twitter, the microblogging that is becoming a critical source of communication and news propagation, has grabbed the attention of spammers to distract users. So far, researchers have introduced various defense techniques to detect spams and combat spammer activities on Twitter. To overcome this problem, in recent years, many novel techniques have been offered by researchers, which have greatly enhanced the spam detection performance. Therefore, it raises a motivation to conduct a systematic review about different approaches of spam detection on Twitter. This review focuses on comparing the existing research techniques on Twitter spam detection systematically. Literature review analysis reveals that most of the existing methods rely on Machine Learning-based algorithms. Among these Machine Learning algorithms, the major differences are related to various feature selection methods. Hence, we propose a taxonomy based on different feature selection methods and analyses, namely content analysis, user analysis, tweet analysis, network analysis, and hybrid analysis. Then, we present numerical analyses and comparative studies on current approaches, coming up with open challenges that help researchers develop solutions in this topic.
We propose an approach for the analysis and prediction of a football championship. It is based on Poisson regression models that include the Elo points of the teams as covariates and incorporates differences of team-specific effects. These models for the prediction of the FIFA World Cup 2018 are fitted on all football games on neutral ground of the participating teams since 2010. Based on the model estimates for single matches Monte-Carlo simulations are used to estimate probabilities for reaching the different stages in the FIFA World Cup 2018 for all teams. We propose two score functions for ordinal random variables that serve together with the rank probability score for the validation of our models with the results of the FIFA World Cups 2010 and 2014. All models favor Germany as the new FIFA World Champion. All possible courses of the tournament and their probabilities are visualized using a single Sankey diagram.
82 - Marie Garin 2021
We review epidemiological models for the propagation of the COVID-19 pandemic during the early months of the outbreak: from February to May 2020. The aim is to propose a methodological review that highlights the following characteristics: (i) the epidemic propagation models, (ii) the modeling of intervention strategies, (iii) the models and estimation procedures of the epidemic parameters and (iv) the characteristics of the data used. We finally selected 80 articles from open access databases based on criteria such as the theoretical background, the reproducibility, the incorporation of interventions strategies, etc. It mainly resulted to phenomenological, compartmental and individual-level models. A digital companion including an online sheet, a Kibana interface and a markdown document is proposed. Finally, this work provides an opportunity to witness how the scientific community reacted to this unique situation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا