Do you want to publish a course? Click here

Twitter Spam Detection: A Systematic Review

236   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Nowadays, with the rise of Internet access and mobile devices around the globe, more people are using social networks for collaboration and receiving real-time information. Twitter, the microblogging that is becoming a critical source of communication and news propagation, has grabbed the attention of spammers to distract users. So far, researchers have introduced various defense techniques to detect spams and combat spammer activities on Twitter. To overcome this problem, in recent years, many novel techniques have been offered by researchers, which have greatly enhanced the spam detection performance. Therefore, it raises a motivation to conduct a systematic review about different approaches of spam detection on Twitter. This review focuses on comparing the existing research techniques on Twitter spam detection systematically. Literature review analysis reveals that most of the existing methods rely on Machine Learning-based algorithms. Among these Machine Learning algorithms, the major differences are related to various feature selection methods. Hence, we propose a taxonomy based on different feature selection methods and analyses, namely content analysis, user analysis, tweet analysis, network analysis, and hybrid analysis. Then, we present numerical analyses and comparative studies on current approaches, coming up with open challenges that help researchers develop solutions in this topic.



rate research

Read More

586 - Dongrui Wu , Weili Fang , Yi Zhang 2021
Physiological computing uses human physiological data as system inputs in real time. It includes, or significantly overlaps with, brain-computer interfaces, affective computing, adaptive automation, health informatics, and physiological signal based biometrics. Physiological computing increases the communication bandwidth from the user to the computer, but is also subject to various types of adversarial attacks, in which the attacker deliberately manipulates the training and/or test examples to hijack the machine learning algorithm output, leading to possibly user confusion, frustration, injury, or even death. However, the vulnerability of physiological computing systems has not been paid enough attention to, and there does not exist a comprehensive review on adversarial attacks to it. This paper fills this gap, by providing a systematic review on the main research areas of physiological computing, different types of adversarial attacks and their applications to physiological computing, and the corresponding defense strategies. We hope this review will attract more research interests on the vulnerability of physiological computing systems, and more importantly, defense strategies to make them more secure.
Wearable devices generate different types of physiological data about the individuals. These data can provide valuable insights for medical researchers and clinicians that cannot be availed through traditional measures. Researchers have historically relied on survey responses or observed behavior. Interestingly, physiological data can provide a richer amount of user cognition than that obtained from any other sources, including the user himself. Therefore, the inexpensive consumer-grade wearable devices have become a point of interest for the health researchers. In addition, they are also used in continuous remote health monitoring and sometimes by the insurance companies. However, the biggest concern for such kind of use cases is the privacy of the individuals. There are a few privacy mechanisms, such as abstraction and k-anonymity, are widely used in information systems. Recently, Differential Privacy (DP) has emerged as a proficient technique to publish privacy sensitive data, including data from wearable devices. In this paper, we have conducted a Systematic Literature Review (SLR) to identify, select and critically appraise researches in DP as well as to understand different techniques and exiting use of DP in wearable data publishing. Based on our study we have identified the limitations of proposed solutions and provided future directions.
235 - Ao Li , Zhou Qin , Runshi Liu 2019
Customers make a lot of reviews on online shopping websites every day, e.g., Amazon and Taobao. Reviews affect the buying decisions of customers, meanwhile, attract lots of spammers aiming at misleading buyers. Xianyu, the largest second-hand goods app in China, suffering from spam reviews. The anti-spam system of Xianyu faces two major challenges: scalability of the data and adversarial actions taken by spammers. In this paper, we present our technical solutions to address these challenges. We propose a large-scale anti-spam method based on graph convolutional networks (GCN) for detecting spam advertisements at Xianyu, named GCN-based Anti-Spam (GAS) model. In this model, a heterogeneous graph and a homogeneous graph are integrated to capture the local context and global context of a comment. Offline experiments show that the proposed method is superior to our baseline model in which the information of reviews, features of users and items being reviewed are utilized. Furthermore, we deploy our system to process million-scale data daily at Xianyu. The online performance also demonstrates the effectiveness of the proposed method.
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation. The exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation has begun to pose significant challenges for data management and security. The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance. In this paper, we conduct a systematic literature review (SLR) of data mining techniques (DMT) used in IDS-based solutions through the period 2013-2018. We employed criterion-based, purposive sampling identifying 32 articles, which constitute the primary source of the present survey. After a careful investigation of these articles, we identified 17 separate DMTs deployed in an IDS context. This paper also presents the merits and disadvantages of the various works of current research that implemented DMTs and distributed streaming frameworks (DSF) to detect and/or prevent malicious attacks in a big data environment.
WhatsApp is a popular messaging app used by over a billion users around the globe. Due to this popularity, spam on WhatsApp is an important issue. Despite this, the distribution of spam via WhatsApp remains understudied by researchers, in part because of the end-to-end encryption offered by the platform. This paper addresses this gap by studying spam on a dataset of 2.6 million messages sent to 5,051 public WhatsApp groups in India over 300 days. First, we characterise spam content shared within public groups and find that nearly 1 in 10 messages is spam. We observe a wide selection of topics ranging from job ads to adult content, and find that spammers post both URLs and phone numbers to promote material. Second, we inspect the nature of spammers themselves. We find that spam is often disseminated by groups of phone numbers, and that spam messages are generally shared for longer duration than non-spam messages. Finally, we devise content and activity based detection algorithms that can counter spam.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا