Do you want to publish a course? Click here

Adaptively selecting occupations to detect skill shortages from online job ads

66   0   0.0 ( 0 )
 Added by Nik Dawson
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Labour demand and skill shortages have historically been difficult to assess given the high costs of conducting representative surveys and the inherent delays of these indicators. This is particularly consequential for fast developing skills and occupations, such as those relating to Data Science and Analytics (DSA). This paper develops a data-driven solution to detecting skill shortages from online job advertisements (ads) data. We first propose a method to generate sets of highly similar skills based on a set of seed skills from job ads. This provides researchers with a novel method to adaptively select occupations based on granular skills data. Next, we apply this adaptive skills similarity technique to a dataset of over 6.7 million Australian job ads in order to identify occupations with the highest proportions of DSA skills. This uncovers 306,577 DSA job ads across 23 occupational classes from 2012-2019. Finally, we propose five variables for detecting skill shortages from online job ads: (1) posting frequency; (2) salary levels; (3) education requirements; (4) experience demands; and (5) job ad posting predictability. This contributes further evidence to the goal of detecting skills shortages in real-time. In conducting this analysis, we also find strong evidence of skills shortages in Australia for highly technical DSA skills and occupations. These results provide insights to Data Science researchers, educators, and policy-makers from other advanced economies about the types of skills that should be cultivated to meet growing DSA labour demands in the future.



rate research

Read More

Ad platforms such as Facebook, Google and LinkedIn promise value for advertisers through their targeted advertising. However, multiple studies have shown that ad delivery on such platforms can be skewed by gender or race due to hidden algorithmic optimization by the platforms, even when not requested by the advertisers. Building on prior work measuring skew in ad delivery, we develop a new methodology for black-box auditing of algorithms for discrimination in the delivery of job advertisements. Our first contribution is to identify the distinction between skew in ad delivery due to protected categories such as gender or race, from skew due to differences in qualification among people in the targeted audience. This distinction is important in U.S. law, where ads may be targeted based on qualifications, but not on protected categories. Second, we develop an auditing methodology that distinguishes between skew explainable by differences in qualifications from other factors, such as the ad platforms optimization for engagement or training its algorithms on biased data. Our method controls for job qualification by comparing ad delivery of two concurrent ads for similar jobs, but for a pair of companies with different de facto gender distributions of employees. We describe the careful statistical tests that establish evidence of non-qualification skew in the results. Third, we apply our proposed methodology to two prominent targeted advertising platforms for job ads: Facebook and LinkedIn. We confirm skew by gender in ad delivery on Facebook, and show that it cannot be justified by differences in qualifications. We fail to find skew in ad delivery on LinkedIn. Finally, we suggest improvements to ad platform practices that could make external auditing of their algorithms in the public interest more feasible and accurate.
The field of Augmented Reality (AR) and Virtual Reality (VR) has seen massive growth in recent years. Numerous degree programs have started to redesign their curricula to meet the high market demand of such job positions. In this paper, we performed a content analysis of online job postings hosted on Indeed.com and provided a skill classification framework for AR/VR job positions. Furthermore, we present a ranking of the relevant skills for the job position. Overall, we noticed that technical skills like UI/UX design, software design, asset design and graphics rendering are highly desirable for AR/VR positions. Our findings regarding prominent skill categories could be beneficial for the human resource departments as well as enhancing existing course curricula to tailor to the high market demand.
There has been considerable debate about the comparative advantages of marketing education emphasizing theoretical knowledge and applied skills. The current study investigated the skills necessary for entry-level marketing positions, specifically that of Social Media Manager (SMMgr) and Social Media Marketer (SMMkt). Data was collected from Indeed.com using a web crawler to extract job postings for SMMgr and SMMkt. A total of 766 and 654 entry-level jobs for SMMgr and SMMkt, respectively, across the entire United States, was collected. Independent raters separately analyzed the data for keywords and categories. Findings suggest that the most desired skills are occupational digital marketing skills. Other relevant skill categories included communication, employee attributes, problem-solving, and information technology skills. This study extends the current literature by highlighting the desired skills prevalent across the social media industry. The findings also have relevance in designing the marketing education curriculum, specifically in isolating core skills that could be integrated into the marketing courses.
Skill shortages are a drain on society. They hamper economic opportunities for individuals, slow growth for firms, and impede labor productivity in aggregate. Therefore, the ability to understand and predict skill shortages in advance is critical for policy-makers and educators to help alleviate their adverse effects. This research implements a high-performing Machine Learning approach to predict occupational skill shortages. In addition, we demonstrate methods to analyze the underlying skill demands of occupations in shortage and the most important features for predicting skill shortages. For this work, we compile a unique dataset of both Labor Demand and Labor Supply occupational data in Australia from 2012 to 2018. This includes data from 7.7 million job advertisements (ads) and 20 official labor force measures. We use these data as explanatory variables and leverage the XGBoost classifier to predict yearly skills shortage classifications for 132 standardized occupations. The models we construct achieve macro-F1 average performance scores of up to 83 per cent. Our results show that job ads data and employment statistics were the highest performing feature sets for predicting year-to-year skills shortage changes for occupations. We also find that features such as Hours Worked, years of Education, years of Experience, and median Salary are highly important features for predicting occupational skill shortages. This research provides a robust data-driven approach for predicting and analyzing skill shortages, which can assist policy-makers, educators, and businesses to prepare for the future of work.
Job security can never be taken for granted, especially in times of rapid, widespread and unexpected social and economic change. These changes can force workers to transition to new jobs. This may be because new technologies emerge or production is moved abroad. Perhaps it is a global crisis, such as COVID-19, which shutters industries and displaces labor en masse. Regardless of the impetus, people are faced with the challenge of moving between jobs to find new work. Successful transitions typically occur when workers leverage their existing skills in the new occupation. Here, we propose a novel method to measure the similarity between occupations using their underlying skills. We then build a recommender system for identifying optimal transition pathways between occupations using job advertisements (ads) data and a longitudinal household survey. Our results show that not only can we accurately predict occupational transitions (Accuracy = 76%), but we account for the asymmetric difficulties of moving between jobs (it is easier to move in one direction than the other). We also build an early warning indicator for new technology adoption (showcasing Artificial Intelligence), a major driver of rising job transitions. By using real-time data, our systems can respond to labor demand shifts as they occur (such as those caused by COVID-19). They can be leveraged by policy-makers, educators, and job seekers who are forced to confront the often distressing challenges of finding new jobs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا