No Arabic abstract
Job security can never be taken for granted, especially in times of rapid, widespread and unexpected social and economic change. These changes can force workers to transition to new jobs. This may be because new technologies emerge or production is moved abroad. Perhaps it is a global crisis, such as COVID-19, which shutters industries and displaces labor en masse. Regardless of the impetus, people are faced with the challenge of moving between jobs to find new work. Successful transitions typically occur when workers leverage their existing skills in the new occupation. Here, we propose a novel method to measure the similarity between occupations using their underlying skills. We then build a recommender system for identifying optimal transition pathways between occupations using job advertisements (ads) data and a longitudinal household survey. Our results show that not only can we accurately predict occupational transitions (Accuracy = 76%), but we account for the asymmetric difficulties of moving between jobs (it is easier to move in one direction than the other). We also build an early warning indicator for new technology adoption (showcasing Artificial Intelligence), a major driver of rising job transitions. By using real-time data, our systems can respond to labor demand shifts as they occur (such as those caused by COVID-19). They can be leveraged by policy-makers, educators, and job seekers who are forced to confront the often distressing challenges of finding new jobs.
Skill shortages are a drain on society. They hamper economic opportunities for individuals, slow growth for firms, and impede labor productivity in aggregate. Therefore, the ability to understand and predict skill shortages in advance is critical for policy-makers and educators to help alleviate their adverse effects. This research implements a high-performing Machine Learning approach to predict occupational skill shortages. In addition, we demonstrate methods to analyze the underlying skill demands of occupations in shortage and the most important features for predicting skill shortages. For this work, we compile a unique dataset of both Labor Demand and Labor Supply occupational data in Australia from 2012 to 2018. This includes data from 7.7 million job advertisements (ads) and 20 official labor force measures. We use these data as explanatory variables and leverage the XGBoost classifier to predict yearly skills shortage classifications for 132 standardized occupations. The models we construct achieve macro-F1 average performance scores of up to 83 per cent. Our results show that job ads data and employment statistics were the highest performing feature sets for predicting year-to-year skills shortage changes for occupations. We also find that features such as Hours Worked, years of Education, years of Experience, and median Salary are highly important features for predicting occupational skill shortages. This research provides a robust data-driven approach for predicting and analyzing skill shortages, which can assist policy-makers, educators, and businesses to prepare for the future of work.
As job markets worldwide have become more competitive and applicant selection criteria have become more opaque, and different (and sometimes contradictory) information and advice is available for job seekers wishing to progress in their careers, it has never been more difficult to determine which factors in a resume most effectively help career progression. In this work we present a novel, large scale dataset of over half a million resumes with preliminary analysis to begin to answer empirically which factors help or hurt people wishing to transition to more senior roles as they progress in their career. We find that previous experience forms the most important factor, outweighing other aspects of human capital, and find which language factors in a resume have significant effects. This lays the groundwork for future inquiry in career trajectories using large scale data analysis and natural language processing techniques.
Traditional US rental housing data sources such as the American Community Survey and the American Housing Survey report on the transacted market - what existing renters pay each month. They do not explicitly tell us about the spot market - i.e., the asking rents that current homeseekers must pay to acquire housing - though they are routinely used as a proxy. This study compares governmental data to millions of contemporaneous rental listings and finds that asking rents diverge substantially from these most recent estimates. Conventional housing data understate current market conditions and affordability challenges, especially in cities with tight and expensive rental markets.
Why do biased predictions arise? What interventions can prevent them? We evaluate 8.2 million algorithmic predictions of math performance from $approx$400 AI engineers, each of whom developed an algorithm under a randomly assigned experimental condition. Our treatment arms modified programmers incentives, training data, awareness, and/or technical knowledge of AI ethics. We then assess out-of-sample predictions from their algorithms using randomized audit manipulations of algorithm inputs and ground-truth math performance for 20K subjects. We find that biased predictions are mostly caused by biased training data. However, one-third of the benefit of better training data comes through a novel economic mechanism: Engineers exert greater effort and are more responsive to incentives when given better training data. We also assess how performance varies with programmers demographic characteristics, and their performance on a psychological test of implicit bias (IAT) concerning gender and careers. We find no evidence that female, minority and low-IAT engineers exhibit lower bias or discrimination in their code. However, we do find that prediction errors are correlated within demographic groups, which creates performance improvements through cross-demographic averaging. Finally, we quantify the benefits and tradeoffs of practical managerial or policy interventions such as technical advice, simple reminders, and improved incentives for decreasing algorithmic bias.
This article interprets emerging scholarship on rental housing platforms -- particularly the most well-known and used short- and long-term rental housing platforms - and considers how the technological processes connecting both short-term and long-term rentals to the platform economy are transforming cities. It discusses potential policy approaches to more equitably distribute benefits and mitigate harms. We argue that information technology is not value-neutral. While rental housing platforms may empower data analysts and certain market participants, the same cannot be said for all users or society at large. First, user-generated online data frequently reproduce the systematic biases found in traditional sources of housing information. Evidence is growing that the information broadcasting potential of rental housing platforms may increase rather than mitigate sociospatial inequality. Second, technology platforms curate and shape information according to their creators own financial and political interests. The question of which data -- and people -- are hidden or marginalized on these platforms is just as important as the question of which data are available. Finally, important differences in benefits and drawbacks exist between short-term and long-term rental housing platforms, but are underexplored in the literature: this article unpacks these differences and proposes policy recommendations.