Do you want to publish a course? Click here

An exploratory study of skill requirements for social media positions: A content analysis of job advertisements

69   0   0.0 ( 0 )
 Added by Amit Verma Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

There has been considerable debate about the comparative advantages of marketing education emphasizing theoretical knowledge and applied skills. The current study investigated the skills necessary for entry-level marketing positions, specifically that of Social Media Manager (SMMgr) and Social Media Marketer (SMMkt). Data was collected from Indeed.com using a web crawler to extract job postings for SMMgr and SMMkt. A total of 766 and 654 entry-level jobs for SMMgr and SMMkt, respectively, across the entire United States, was collected. Independent raters separately analyzed the data for keywords and categories. Findings suggest that the most desired skills are occupational digital marketing skills. Other relevant skill categories included communication, employee attributes, problem-solving, and information technology skills. This study extends the current literature by highlighting the desired skills prevalent across the social media industry. The findings also have relevance in designing the marketing education curriculum, specifically in isolating core skills that could be integrated into the marketing courses.



rate research

Read More

The field of Augmented Reality (AR) and Virtual Reality (VR) has seen massive growth in recent years. Numerous degree programs have started to redesign their curricula to meet the high market demand of such job positions. In this paper, we performed a content analysis of online job postings hosted on Indeed.com and provided a skill classification framework for AR/VR job positions. Furthermore, we present a ranking of the relevant skills for the job position. Overall, we noticed that technical skills like UI/UX design, software design, asset design and graphics rendering are highly desirable for AR/VR positions. Our findings regarding prominent skill categories could be beneficial for the human resource departments as well as enhancing existing course curricula to tailor to the high market demand.
Working adults spend nearly one third of their daily time at their jobs. In this paper, we study job-related social media discourse from a community of users. We use both crowdsourcing and local expertise to train a classifier to detect job-related messages on Twitter. Additionally, we analyze the linguistic differences in a job-related corpus of tweets between individual users vs. commercial accounts. The volumes of job-related tweets from individual users indicate that people use Twitter with distinct monthly, daily, and hourly patterns. We further show that the moods associated with jobs, positive and negative, have unique diurnal rhythms.
Labour demand and skill shortages have historically been difficult to assess given the high costs of conducting representative surveys and the inherent delays of these indicators. This is particularly consequential for fast developing skills and occupations, such as those relating to Data Science and Analytics (DSA). This paper develops a data-driven solution to detecting skill shortages from online job advertisements (ads) data. We first propose a method to generate sets of highly similar skills based on a set of seed skills from job ads. This provides researchers with a novel method to adaptively select occupations based on granular skills data. Next, we apply this adaptive skills similarity technique to a dataset of over 6.7 million Australian job ads in order to identify occupations with the highest proportions of DSA skills. This uncovers 306,577 DSA job ads across 23 occupational classes from 2012-2019. Finally, we propose five variables for detecting skill shortages from online job ads: (1) posting frequency; (2) salary levels; (3) education requirements; (4) experience demands; and (5) job ad posting predictability. This contributes further evidence to the goal of detecting skills shortages in real-time. In conducting this analysis, we also find strong evidence of skills shortages in Australia for highly technical DSA skills and occupations. These results provide insights to Data Science researchers, educators, and policy-makers from other advanced economies about the types of skills that should be cultivated to meet growing DSA labour demands in the future.
Youth unemployment rates are still in alerting levels for many countries, among which Italy. Direct consequences include poverty, social exclusion, and criminal behaviours, while negative impact on the future employability and wage cannot be obscured. In this study, we employ survey data together with social media data, and in particular likes on Facebook Pages, to analyse personality, moral values, but also cultural elements of the young unemployed population in Italy. Our findings show that there are small but significant differences in personality and moral values, with the unemployed males to be less agreeable while females more open to new experiences. At the same time, unemployed have a more collectivist point of view, valuing more in-group loyalty, authority, and purity foundations. Interestingly, topic modelling analysis did not reveal major differences in interests and cultural elements of the unemployed. Utilisation patterns emerged though; the employed seem to use Facebook to connect with local activities, while the unemployed use it mostly as for entertainment purposes and as a source of news, making them susceptible to mis/disinformation. We believe these findings can help policymakers get a deeper understanding of this population and initiatives that improve both the hard and the soft skills of this fragile population.
The Ubiquitous nature of smartphones has significantly increased the use of social media platforms, such as Facebook, Twitter, TikTok, and LinkedIn, etc., among the public, government, and businesses. Facebook generated ~70 billion USD in 2019 in advertisement revenues alone, a ~27% increase from the previous year. Social media has also played a strong role in outbreaks of social protests responsible for political changes in different countries. As we can see from the above examples, social media plays a big role in business intelligence and international politics. In this paper, we present and discuss a high-level functional intelligence model (recipe) of Social Media Analysis (SMA). This model synthesizes the input data and uses operational intelligence to provide actionable recommendations. In addition, it also matches the synthesized function of the experiences and learning gained from the environment. The SMA model presented is independent of the application domain, and can be applied to different domains, such as Education, Healthcare and Government, etc. Finally, we also present some of the challenges faced by SMA and how the SMA model presented in this paper solves them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا