Do you want to publish a course? Click here

Tensor network formulation of the massless Schwinger model

203   0   0.0 ( 0 )
 Added by Judah Unmuth-Yockey
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particular implementation of the tensor renormalization group (HOTRG) we calculate the phase diagram of the theory. For a range of values of the coupling to the topological term $theta$ and the gauge coupling $beta$ we compare with results from hybrid Monte Carlo when possible and find good agreement.



rate research

Read More

We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especially the one-dimensional matrix product states, we explore the non-trivial $theta$-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we demonstrate that the continuum model becomes independent of the vacuum angle $theta$, thus respecting CP invariance, while lattice artifacts still depend on $theta$. We also confirm that negative masses can be mapped to positive masses by shifting $thetarightarrow theta +pi$ due to the axial anomaly in the continuum, while lattice artifacts non-trivially distort this mapping. This mass regime is particularly interesting for the (3+1)-dimensional QCD analog of the Schwinger model, the sign problem of which requires the development and testing of new numerical techniques beyond the conventional Monte Carlo approach.
Supersymmetric models with spontaneous supersymmetry breaking suffer from the notorious sign problem in stochastic approaches. By contrast, the tensor network approaches do not have such a problem since they are based on deterministic procedures. In this work, we present a tensor network formulation of the two-dimensional lattice $mathcal{N}=1$ Wess-Zumino model while showing that numerical results agree with the exact solutions for the free case.
We present concluding results from our study for zero-temperature phase structure of the massive Thirring model in 1+1 dimensions with staggered regularisation. Employing the method of matrix product states, several quantities, including two types of correlators, are investigated, leading to numerical evidence of a Berezinskii-Kosterlitz-Thouless phase transition. Exploratory results for real-time dynamics pertaining to this transition, obtained using the approaches of variational uniform matrix product state and time-dependent variational principle, are also discussed.
We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $theta$-term known as the Schwinger model. We construct the true vacuum state of a lattice Schwinger model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in massless case agrees with the known exact result. In massive case, we find an agreement with mass perturbation theory in small mass regime and deviations in large mass regime. We estimate computational costs required to take a reasonable continuum limit. Our results imply that digital quantum simulation is already useful tool to explore non-perturbative aspects of gauge theories with real time and topological terms.
We study the dynamics of the massive Schwinger model on a lattice using exact diagonalization. When periodic boundary conditions are imposed, analytic arguments indicate that a non-zero electric flux in the initial state can unwind and decrease to a minimum value equal to minus its initial value, due to the effects of a pair of charges that repeatedly traverse the spatial circle. Our numerical results support the existence of this flux unwinding phenomenon, both for initial states containing a charged pair inserted by hand, and when the charges are produced by Schwinger pair production. We also study boundary conditions where charges are confined to an interval and flux unwinding cannot occur, and the massless limit, where our results agree with the predictions of the bosonized description of the Schwinger model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا