Do you want to publish a course? Click here

Flux unwinding in the lattice Schwinger model

192   0   0.0 ( 0 )
 Added by Matthew Kleban
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of the massive Schwinger model on a lattice using exact diagonalization. When periodic boundary conditions are imposed, analytic arguments indicate that a non-zero electric flux in the initial state can unwind and decrease to a minimum value equal to minus its initial value, due to the effects of a pair of charges that repeatedly traverse the spatial circle. Our numerical results support the existence of this flux unwinding phenomenon, both for initial states containing a charged pair inserted by hand, and when the charges are produced by Schwinger pair production. We also study boundary conditions where charges are confined to an interval and flux unwinding cannot occur, and the massless limit, where our results agree with the predictions of the bosonized description of the Schwinger model.



rate research

Read More

We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints, provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-dependent properties, we study the underlying microscopic model, and discuss undesired interaction terms and other imperfections. As our analysis shows, the proposed scheme allows for the observation in realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay. Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of only four ions in a simpler experimental setup, which enables to probe basic physical phenomena related to the full many-body problem. The proposal opens a new route for analog quantum simulation of high-energy and condensed-matter models where gauge symmetries play a prominent role.
We study the out-of-equilibrium properties of $1+1$ dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian $mathbb{Z}_{n}$ gauge group. We look at two relevant phenomena: first, we analyze the stability of the Dirac vacuum with respect to particle/antiparticle pair production, both spontaneous and induced by an external electric field; then, we examine the string breaking mechanism. We observe a strong effect of confinement, which acts by suppressing both spontaneous pair production and string breaking into quark/antiquark pairs, indicating that the system dynamics displays a number of out-of-equilibrium features.
We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at $theta=pi$, and show how its appearance can be consistent with the anomaly constraint. We also construct the $SL(2,mathbb{Z})$ self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and t Hooft anomaly with those of $SU(N)$ Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero $theta$ angles.
We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especially the one-dimensional matrix product states, we explore the non-trivial $theta$-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we demonstrate that the continuum model becomes independent of the vacuum angle $theta$, thus respecting CP invariance, while lattice artifacts still depend on $theta$. We also confirm that negative masses can be mapped to positive masses by shifting $thetarightarrow theta +pi$ due to the axial anomaly in the continuum, while lattice artifacts non-trivially distort this mapping. This mass regime is particularly interesting for the (3+1)-dimensional QCD analog of the Schwinger model, the sign problem of which requires the development and testing of new numerical techniques beyond the conventional Monte Carlo approach.
The $mathbb{C}P^{N-1}$ sigma model at finite temperature is studied using lattice Monte Carlo simulations on $S_{s}^{1} times S_{tau}^{1}$ with radii $L_{s}$ and $L_{tau}$, respectively, where the ratio of the circumferences is taken to be sufficiently large ($L_{s}/L_{tau} gg 1$) to simulate the model on $mathbb{R} times S^1$. We show that the expectation value of the Polyakov loop undergoes a deconfinement crossover as $L_{tau}$ is decreased, where the peak of the associated susceptibility gets sharper for larger $N$. We find that the global PSU($N$)=SU($N$)$/{mathbb Z}_{N}$ symmetry remains unbroken at quantum and classical levels for the small and large $L_{tau}$, respectively: in the small $L_tau$ region for finite $N$, the order parameter fluctuates extensively with its expectation value consistent with zero after taking an ensemble average, while in the large $L_tau$ region the order parameter remains small with little fluctuations. We also calculate the thermal entropy and find that the degrees of freedom in the small $L_{tau}$ regime are consistent with $N-1$ free complex scalar fields, thereby indicating a good agreement with the prediction from the large-$N$ study for small $L_{tau}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا