No Arabic abstract
We perform a digital quantum simulation of a gauge theory with a topological term in Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We focus on $1+1$ dimensional quantum electrodynamics with the $theta$-term known as the Schwinger model. We construct the true vacuum state of a lattice Schwinger model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in massless case agrees with the known exact result. In massive case, we find an agreement with mass perturbation theory in small mass regime and deviations in large mass regime. We estimate computational costs required to take a reasonable continuum limit. Our results imply that digital quantum simulation is already useful tool to explore non-perturbative aspects of gauge theories with real time and topological terms.
We perform digital quantum simulation to study screening and confinement in a gauge theory with a topological term, focusing on ($1+1$)-dimensional quantum electrodynamics (Schwinger model) with a theta term. We compute the ground state energy in the presence of probe charges to estimate the potential between them, via adiabatic state preparation. We compare our simulation results and analytical predictions for a finite volume, finding good agreements. In particular our result in the massive case shows a linear behavior for non-integer charges and a non-linear behavior for integer charges, consistently with the expected confinement (screening) behavior for non-integer (integer) charges.
We numerically study the single-flavor Schwinger model with a topological $theta$-term, which is practically inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical methods based on tensor networks, especially the one-dimensional matrix product states, we explore the non-trivial $theta$-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we demonstrate that the continuum model becomes independent of the vacuum angle $theta$, thus respecting CP invariance, while lattice artifacts still depend on $theta$. We also confirm that negative masses can be mapped to positive masses by shifting $thetarightarrow theta +pi$ due to the axial anomaly in the continuum, while lattice artifacts non-trivially distort this mapping. This mass regime is particularly interesting for the (3+1)-dimensional QCD analog of the Schwinger model, the sign problem of which requires the development and testing of new numerical techniques beyond the conventional Monte Carlo approach.
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group method, we compute the free energy for inverse couplings ranging from $0leq beta leq 1.1$ and find a CP-violating, first-order phase transition at $theta=pi$. In contrast to previous findings, our numerical results provide no evidence for a critical coupling $beta_c<1.1$ above which a second-order phase transition emerges at $theta=pi$ and/or the first-order transition line bifurcates at $theta eqpi$. If such a critical coupling exists, as suggested by Haldanes conjecture, our study indicates that is larger than $beta_c>1.1$.
We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particular implementation of the tensor renormalization group (HOTRG) we calculate the phase diagram of the theory. For a range of values of the coupling to the topological term $theta$ and the gauge coupling $beta$ we compare with results from hybrid Monte Carlo when possible and find good agreement.
We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints, provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-dependent properties, we study the underlying microscopic model, and discuss undesired interaction terms and other imperfections. As our analysis shows, the proposed scheme allows for the observation in realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay. Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of only four ions in a simpler experimental setup, which enables to probe basic physical phenomena related to the full many-body problem. The proposal opens a new route for analog quantum simulation of high-energy and condensed-matter models where gauge symmetries play a prominent role.