Do you want to publish a course? Click here

Attributed Sequence Embedding

115   0   0.0 ( 0 )
 Added by Zhongfang Zhuang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Mining tasks over sequential data, such as clickstreams and gene sequences, require a careful design of embeddings usable by learning algorithms. Recent research in feature learning has been extended to sequential data, where each instance consists of a sequence of heterogeneous items with a variable length. However, many real-world applications often involve attributed sequences, where each instance is composed of both a sequence of categorical items and a set of attributes. In this paper, we study this new problem of attributed sequence embedding, where the goal is to learn the representations of attributed sequences in an unsupervised fashion. This problem is core to many important data mining tasks ranging from user behavior analysis to the clustering of gene sequences. This problem is challenging due to the dependencies between sequences and their associated attributes. We propose a deep multimodal learning framework, called NAS, to produce embeddings of attributed sequences. The embeddings are task independent and can be used on various mining tasks of attributed sequences. We demonstrate the effectiveness of our embeddings of attributed sequences in various unsupervised learning tasks on real-world datasets.



rate research

Read More

107 - Zelin Zang , Siyuan Li , Di Wu 2021
Unsupervised attributed graph representation learning is challenging since both structural and feature information are required to be represented in the latent space. Existing methods concentrate on learning latent representation via reconstruction tasks, but cannot directly optimize representation and are prone to oversmoothing, thus limiting the applications on downstream tasks. To alleviate these issues, we propose a novel graph embedding framework named Deep Manifold Attributed Graph Embedding (DMAGE). A node-to-node geodesic similarity is proposed to compute the inter-node similarity between the data space and the latent space and then use Bergman divergence as loss function to minimize the difference between them. We then design a new network structure with fewer aggregation to alleviate the oversmoothing problem and incorporate graph structure augmentation to improve the representations stability. Our proposed DMAGE surpasses state-of-the-art methods by a significant margin on three downstream tasks: unsupervised visualization, node clustering, and link prediction across four popular datasets.
193 - Chengbin Hou , Shan He , Ke Tang 2018
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unified low dimensional node embeddings while preserving both structural and attribute information. The resulting node embeddings can then facilitate various network downstream tasks e.g. link prediction. Although there are several ANE methods, most of them cannot deal with incomplete attributed networks with missing links and/or missing node attributes, which often occur in real-world scenarios. To address this issue, we propose a robust ANE method, the general idea of which is to reconstruct a unified denser network by fusing two sources of information for information enhancement, and then employ a random walks based network embedding method for learning node embeddings. The experiments of link prediction, node classification, visualization, and parameter sensitivity analysis on six real-world datasets validate the effectiveness of our method to incomplete attributed networks.
Much of human knowledge is encoded in text, available in scientific publications, books, and the web. Given the rapid growth of these resources, we need automated methods to extract such knowledge into machine-processable structures, such as knowledge graphs. An important task in this process is entity normalization, which consists of mapping noisy entity mentions in text to canonical entities in well-known reference sets. However, entity normalization is a challenging problem; there often are many textual forms for a canonical entity that may not be captured in the reference set, and entities mentioned in text may include many syntactic variations, or errors. The problem is particularly acute in scientific domains, such as biology. To address this problem, we have developed a general, scalable solution based on a deep Siamese neural network model to embed the semantic information about the entities, as well as their syntactic variations. We use these embeddings for fast mapping of new entities to large reference sets, and empirically show the effectiveness of our framework in challenging bio-entity normalization datasets.
Deep generative models (DGMs) have achieved remarkable advances. Semi-supervised variational auto-encoders (SVAE) as a classical DGM offer a principled framework to effectively generalize from small labelled data to large unlabelled ones, but it is difficult to incorporate rich unstructured relationships within the multiple heterogeneous entities. In this paper, to deal with the problem, we present a semi-supervised co-embedding model for attributed networks (SCAN) based on the generalized SVAE for heterogeneous data, which collaboratively learns low-dimensional vector representations of both nodes and attributes for partially labelled attributed networks semi-supervisedly. The node and attribute embeddings obtained in a unified manner by our SCAN can benefit for capturing not only the proximities between nodes but also the affinities between nodes and attributes. Moreover, our model also trains a discriminative network to learn the label predictive distribution of nodes. Experimental results on real-world networks demonstrate that our model yields excellent performance in a number of applications such as attribute inference, user profiling and node classification compared to the state-of-the-art baselines.
Negative sampling, which samples negative triplets from non-observed ones in knowledge graph (KG), is an essential step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large gradients, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, they make the original model more complex and harder to train. In this paper, motivated by the observation that negative triplets with large gradients are important but rare, we propose to directly keep track of them with the cache. In this way, our method acts as a distilled version of previous GAN-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. However, how to sample from and update the cache are two critical questions. We propose to solve these issues by automated machine learning techniques. The automated version also covers GAN-based methods as special cases. Theoretical explanation of NSCaching is also provided, justifying the superior over fixed sampling scheme. Besides, we further extend NSCaching with skip-gram model for graph embedding. Finally, extensive experiments show that our method can gain significant improvements on various KG embedding models and the skip-gram model, and outperforms the state-of-the-art negative sampling methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا