Do you want to publish a course? Click here

Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding

386   0   0.0 ( 0 )
 Added by Quanming Yao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Negative sampling, which samples negative triplets from non-observed ones in knowledge graph (KG), is an essential step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large gradients, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, they make the original model more complex and harder to train. In this paper, motivated by the observation that negative triplets with large gradients are important but rare, we propose to directly keep track of them with the cache. In this way, our method acts as a distilled version of previous GAN-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. However, how to sample from and update the cache are two critical questions. We propose to solve these issues by automated machine learning techniques. The automated version also covers GAN-based methods as special cases. Theoretical explanation of NSCaching is also provided, justifying the superior over fixed sampling scheme. Besides, we further extend NSCaching with skip-gram model for graph embedding. Finally, extensive experiments show that our method can gain significant improvements on various KG embedding models and the skip-gram model, and outperforms the state-of-the-art negative sampling methods.



rate research

Read More

Knowledge Graph (KG) embedding is a fundamental problem in data mining research with many real-world applications. It aims to encode the entities and relations in the graph into low dimensional vector space, which can be used for subsequent algorithms. Negative sampling, which samples negative triplets from non-observed ones in the training data, is an important step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large scores, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, using GAN makes the original model more complex and hard to train, where reinforcement learning must be used. In this paper, motivated by the observation that negative triplets with large scores are important but rare, we propose to directly keep track of them with the cache. However, how to sample from and update the cache are two important questions. We carefully design the solutions, which are not only efficient but also achieve a good balance between exploration and exploitation. In this way, our method acts as a distilled version of previous GA-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. The extensive experiments show that our method can gain significant improvement in various KG embedding models, and outperform the state-of-the-art negative sampling methods based on GAN.
Knowledge Graph (KG) is a flexible structure that is able to describe the complex relationship between data entities. Currently, most KG embedding models are trained based on negative sampling, i.e., the model aims to maximize some similarity of the connected entities in the KG, while minimizing the similarity of the sampled disconnected entities. Negative sampling helps to reduce the time complexity of model learning by only considering a subset of negative instances, which may fail to deliver stable model performance due to the uncertainty in the sampling procedure. To avoid such deficiency, we propose a new framework for KG embedding -- Efficient Non-Sampling Knowledge Graph Embedding (NS-KGE). The basic idea is to consider all of the negative instances in the KG for model learning, and thus to avoid negative sampling. The framework can be applied to square-loss based knowledge graph embedding models or models whose loss can be converted to a square loss. A natural side-effect of this non-sampling strategy is the increased computational complexity of model learning. To solve the problem, we leverage mathematical derivations to reduce the complexity of non-sampling loss function, which eventually provides us both better efficiency and better accuracy in KG embedding compared with existing models. Experiments on benchmark datasets show that our NS-KGE framework can achieve a better performance on efficiency and accuracy over traditional negative sampling based models, and that the framework is applicable to a large class of knowledge graph embedding models.
The scoring function, which measures the plausibility of triplets in knowledge graphs (KGs), is the key to ensure the excellent performance of KG embedding, and its design is also an important problem in the literature. Automated machine learning (AutoML) techniques have recently been introduced into KG to design task-aware scoring functions, which achieve state-of-the-art performance in KG embedding. However, the effectiveness of searched scoring functions is still not as good as desired. In this paper, observing that existing scoring functions can exhibit distinct performance on different semantic patterns, we are motivated to explore such semantics by searching relation-aware scoring functions. But the relation-aware search requires a much larger search space than the previous one. Hence, we propose to encode the space as a supernet and propose an efficient alternative minimization algorithm to search through the supernet in a one-shot manner. Finally, experimental results on benchmark datasets demonstrate that the proposed method can efficiently search relation-aware scoring functions, and achieve better embedding performance than state-of-the-art methods.
Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph.Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks.
Softmax classifiers with a very large number of classes naturally occur in many applications such as natural language processing and information retrieval. The calculation of full softmax is costly from the computational and energy perspective. There have been various sampling approaches to overcome this challenge, popularly known as negative sampling (NS). Ideally, NS should sample negative classes from a distribution that is dependent on the input data, the current parameters, and the correct positive class. Unfortunately, due to the dynamically updated parameters and data samples, there is no sampling scheme that is provably adaptive and samples the negative classes efficiently. Therefore, alternative heuristics like random sampling, static frequency-based sampling, or learning-based biased sampling, which primarily trade either the sampling cost or the adaptivity of samples per iteration are adopted. In this paper, we show two classes of distributions where the sampling scheme is truly adaptive and provably generates negative samples in near-constant time. Our implementation in C++ on CPU is significantly superior, both in terms of wall-clock time and accuracy, compared to the most optimized TensorFlow implementations of other popular negative sampling approaches on powerful NVIDIA V100 GPU.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا