Do you want to publish a course? Click here

A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates

155   0   0.0 ( 0 )
 Added by Hanghui Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of unconventional superconductivity in hole doped NdNiO2, similar to CaCuO2, has received enormous attention. However, different from CaCuO2, RNiO2 (R = Nd, La) has itinerant electrons in the rare-earth spacer layer. Previous studies show that the hybridization between Ni-dx2-y2 and rare-earth-d orbitals is very weak and thus RNiO2 is still a promising analog of CaCuO2. Here, we perform first-principles calculations to show that the hybridization between Ni-dx2-y2 orbital and itinerant electrons in RNiO2 is substantially stronger than previously thought. The dominant hybridization comes from an interstitial-s orbital rather than rare-earth-d orbitals, due to a large inter-cell hopping. Because of the hybridization, Ni local moment is screened by itinerant electrons and the critical U_Ni for long-range magnetic ordering is increased. Our work shows that the electronic structure of RNiO2 is distinct from CaCuO2, implying that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator.



rate research

Read More

We investigate the electronic physics of layered Ni-based trichalcogenide NiPX$_3$ (X=S, Se), a member of transition-metal trichalcogenides (TMTs) with the chemical formula, ABX$_3$. These Ni-based TMTs distinguish themselves from other TMTs as their low energy electronic physics can be effectively described by the two $e_g$ d-orbitals. The major band kinematics is characterized by the unusal long-range effective hopping between two third nearest-neighbor (TNN) Ni sites in the two-dimensional Ni honeycomb lattice so that the Ni lattice can be equivalently viewed as four weakly coupled honeycomb sublattices. Within each sublattice, the electronic physics is described by a strongly correlated two-orbital graphene-type model that results in an antiferromagnetic (AFM) ground state near half filling. We show that the low energy physics in a paramagnetic state is determined by the eight Dirac cones which locate at $K$, $K$, $frac{K}{2}$ and $frac{K}{2}$ points in the first Brillouin zone with a strong AFM fluctuation between two $K (K)$ and $frac{K}{2} (frac{K}{2})$ Dirac cones and carrier doping can sufficiently suppress the long-range AFM order and allow other competing orders, such as superconductivity, to emerge. The material can be an ideal system to study many exotic phenomena emerged from strong electron-electron correlation, including a potential $dpm id$ superconducting state at high temperature.
Motivated by the recent discovery of superconductivity in doped NdNiO$_2$, we study the magnetic exchange interaction $J$ in layered $d^9$ nickelates from first principles. The mother compounds of the high-$T_{rm c}$ cuprates belong to the charge-transfer regime in the Zaanen-Sawatzky-Allen diagram and have $J$ larger than 100 meV. While this feature makes the cuprates very different from other transition metal oxides, it is of great interest whether layered $d^9$ nickelates can also have such a large $J$. However, one complexity is that NdNiO$_2$ is not a Mott insulator due to carrier doping from the block layer. To compare the cuprates and $d^9$ nickelates on an equal basis, we study RbCa$_2$NiO$_3$ and $A_{2}$NiO$_{2}$Br$_2$ ($A$: a cation with the valence of $2.5+$), which were recently designed theoretically by block-layer engineering. These nickelates are free from the self-doping effect and belong to the Mott-Hubbard regime. We show that these nickelates share a common thread with the high-$T_{rm c}$ cuprates in that they also have a significant exchange interaction $J$ as large as about 100 meV.
We report the electronic and magnetic behaviour of the frustrated triangular metallic antiferromagnet 2H-AgNiO2 in high magnetic fields (54 T) using thermodynamic and transport measurements. Here localized d electrons are arranged on an antiferromagnetic triangular lattice nested inside a honeycomb lattice with itinerant d electrons. When the magnetic field is along the easy axis we observe a cascade of field-induced transitions, attributed to the competition between easy-axis anisotropy, geometrical frustration and coupling of the localized and itinerant system. The quantum oscillations data suggest that the Fermi surface is reconstructed by the magnetic order but in high fields magnetic breakdown orbits are possible. The itinerant electrons are extremely sensitive to scattering by spin fluctuations and a significant mass enhancement (~ 3) is found.
90 - M. Rossi , H. Lu , A. Nag 2020
The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon doping, a higher energy feature in Ni $L_3$ edge XAS develops in addition to the main absorption peak. By comparing our data to atomic multiplet calculations including $D_{4h}$ crystal field, the doping induced feature is consistent with a $d^8$ spin singlet state, in which doped holes reside in the $d_{x^2-y^2}$ orbitals, similar to doped single band Hubbard models. This is further supported by orbital excitations observed in RIXS spectra, which soften upon doping, corroborating with Fermi level shift associated with increasing holes in the $d_{x^2-y^2}$ orbital.
The origin of high-Tc superconductivity remains an enigma even though tremendous research effort and progress have been made on cuprate and iron pnictide superconductors. Aiming to mimic the cuprate-like electronic configuration of transition metal, superconductivity has been recently found in nickelates. This discovery hallmarks a new era in the search and understanding of the high-Tc superconductivity. However, unlike the cuprate and iron pnictide, in which the superconductivity was initially found in a compound containing La, the superconductivity in the nickelate has only been observed in Nd- and Pr-based compounds. This raises a central question of whether the f electron of the rare-earth element is critical for superconductivity in the nickelates. Here, we report the observation of superconductivity in infinite-layer Ca-doped LaNiO2 (La1-xCaxNiO2) thin films and construct their phase diagram. Unlike the metal-insulator transition in Nd- and Pr-based nickelates, the undoped and underdoped La1-xCaxNiO2 thin films are entirely insulating from 300 down to 2 K. A superconducting dome is observed from 0.15<x<0.3 with weakly insulating behavior at the overdoped regime. Moreover, the sign of the Hall coefficient RH changes at low temperature for samples with a higher doping level. However, distinct from the Nd- and Pr-based nickelates, the RH-sign-change temperature remains around 35 K as the doping increases, suggesting a different multiband structure in the La1-xCaxNiO2. These results also emphasize the significant role of lattice correlation on the multiband structures of the infinite-layer nickelates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا