Do you want to publish a course? Click here

Interplay between localized and itinerant d electrons in a frustrated metallic antiferromagnet, 2H-AgNiO2

314   0   0.0 ( 0 )
 Added by Amalia Coldea
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the electronic and magnetic behaviour of the frustrated triangular metallic antiferromagnet 2H-AgNiO2 in high magnetic fields (54 T) using thermodynamic and transport measurements. Here localized d electrons are arranged on an antiferromagnetic triangular lattice nested inside a honeycomb lattice with itinerant d electrons. When the magnetic field is along the easy axis we observe a cascade of field-induced transitions, attributed to the competition between easy-axis anisotropy, geometrical frustration and coupling of the localized and itinerant system. The quantum oscillations data suggest that the Fermi surface is reconstructed by the magnetic order but in high fields magnetic breakdown orbits are possible. The itinerant electrons are extremely sensitive to scattering by spin fluctuations and a significant mass enhancement (~ 3) is found.



rate research

Read More

Magnetic properties of polycrystalline CaMn1-xRuxO3 (x = 0 - 0.5) samples were investigated in the temperature range 4.2 - 250 K, under external magnetic field up to 15 kOe and under hydrostatic pressure up to 12 kbar. Transport properties of the samples with x = 0.1, 0.2, 0.4, 0.5 were also investigated under pressure up to 10 kbar. For x up to 0.4, the pressure was found to suppress ferromagnetic correlations and to increase the resistivity, while for x = 0.5 to act in the opposite way. While long ferromagnetic order is completely suppressed, in small clusters ferromagnetic correlations probably survive under pressure, as was revealed for CaMn0.9Ru0.1O3. The pressure effect on the magnetic interactions and on the volume of ferromagnetic phase was found to depend strongly on the Ru-content, and absolute value of the pressure coefficient of spontaneous magnetization was found to decrease practically linearly with increasing x in the range 0.1 < x < 0.5. The experimental data are discussed in the frame of proposed energy-level diagram, which includes magneto-impurity states at low and moderate Ru-doping and mixed-valence states of Ru presented by a strongly-correlated t2g-like band at heavy Ru-doping. An impact of disorder introduced by Ru-doping on the energy diagram and on derived magnetic interactions is discussed. Predictions of the model regarding the pressure effects on conductivity and temperature scales characteristic for magnetic interactions are in reasonable agreement with experiment.
The discovery of unconventional superconductivity in hole doped NdNiO2, similar to CaCuO2, has received enormous attention. However, different from CaCuO2, RNiO2 (R = Nd, La) has itinerant electrons in the rare-earth spacer layer. Previous studies show that the hybridization between Ni-dx2-y2 and rare-earth-d orbitals is very weak and thus RNiO2 is still a promising analog of CaCuO2. Here, we perform first-principles calculations to show that the hybridization between Ni-dx2-y2 orbital and itinerant electrons in RNiO2 is substantially stronger than previously thought. The dominant hybridization comes from an interstitial-s orbital rather than rare-earth-d orbitals, due to a large inter-cell hopping. Because of the hybridization, Ni local moment is screened by itinerant electrons and the critical U_Ni for long-range magnetic ordering is increased. Our work shows that the electronic structure of RNiO2 is distinct from CaCuO2, implying that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator.
We report inelastic neutron scattering measurements of the spin dynamics in the layered hexagonal magnet 2H-AgNiO2 which has stacked triangular layers of antiferromagnetically-coupled Ni2+ spins (S=1) ordered in a collinear alternating stripe pattern. We observe a broad band of magnetic excitations above a small gap of 1.8 meV and extending up to 7.5 meV, indicating strongly dispersive excitations. The measured dispersions of the boundaries of the powder-averaged spectrum can be quantitatively explained by a linear spin-wave dispersion for triangular layers with antiferromagnetic nearest- and weak next-nearest neighbor couplings, a strong easy-axis anisotropy and additional weak inter-layer couplings. The resulting dispersion relation has global minima not at magnetic Bragg wavevectors but at symmetry-related soft points and we attribute this anomalous feature to the strong competition between the easy-axis anisotropy and the frustrated antiferromagnetic couplings. We have also calculated the quantum corrections to the dispersion relation to order 1/S in spin-wave theory by extending the work of Chubukov and Jolicoeur [Phys. Rev. B v46, 11137 (1992)] and find that the presence of easy-axis anisotropy significantly reduces the quantum renormalizations predicted for the isotropic model.
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spin Ni3+ with spin-1/2 and two-fold orbital degeneracy, arranged in an antiferromagnetic triangular lattice with frustrated spin and orbital order. A structural transition occurs upon cooling below 365 K to a tripled hexagonal unit cell containing three crystallographically-distinct Ni sites with expanded and contracted NiO6 octahedra, naturally explained by spontaneous charge order on the Ni triangular layers. No Jahn-Teller distortions occur, suggesting that charge order occurs in order to lift the orbital degeneracy. Symmetry analysis of the inferred Ni charge order pattern and the observed oxygen displacement pattern suggests that the transition could be mediated by charge fluctuations at the Ni sites coupled to a soft oxygen optical phonon breathing mode. At low temperatures the electron-rich Ni sublattice (assigned to a valence close to Ni2+ with S = 1) orders magnetically into a collinear stripe structure of ferromagnetic rows ordered antiferromagnetically in the triangular planes. We discuss the stability of this uncommon spin order pattern in the context of an easy-axis triangular antiferromagnet with additional weak second neighbor interactions and interlayer couplings.
Magnetic skyrmions were thought to be stabilised only in inversion-symmetry breaking structures, but skyrmion lattices were recently discovered in inversion symmetric Gd-based compounds, spurring questions of the stabilisationmechanism. A natural consequence of a recent theoretical proposal, a coupling between itinerant electrons and localised magnetic moments, is that the skyrmions are amenable to detection using even non-magnetic probes such as spectroscopic-imaging scanning tunnellingmicroscopy (SI-STM). Here SI-STM observations of GdRu$_2$Si$_2$ reveal patterns in the local density of states that indeed vary with the underlying magnetic structures. These patterns are qualitatively reproduced by model calculations which assume exchange coupling between itinerant electrons and localised moments. These findings provide a clue to understand the skyrmion formation mechanism in GdRu$_2$Si$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا