Do you want to publish a course? Click here

Electronically driven collapse of the bulk modulus in $delta$-plutonium

61   0   0.0 ( 0 )
 Added by Neil Harrison
 Publication date 2019
  fields Physics
and research's language is English
 Authors N. Harrison




Ask ChatGPT about the research

Plutonium metal exhibits an anomalously large softening of its bulk modulus at elevated temperatures that is made all the more extraordinary by the finding that it occurs irrespective of whether the thermal expansion coefficient is positive, negative or zero --- representing an extreme departure from conventional Gr{u}neisen scaling. We show here that the cause of this softening is the compressibility of plutoniums thermally excited electronic configurations, which has thus far not been considered in thermodynamic models. We show that when compressible electronic configurations are thermally activated, they invariably give rise to a softening of bulk modulus regardless of the sign their contribution to the thermal expansion. The electronically driven softening of the bulk modulus is shown to be in good agreement with elastic moduli measurements performed on the gallium-stabilized $delta$ phase of plutonium over a range of temperatures and compositions, and is shown to grow rapidly at small concentrations of gallium and at high temperatures, where it becomes extremely sensitive to hydrostatic pressure.



rate research

Read More

We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.
A new method for direct evaluation of both crystalline structure, bulk modulus B_0, and bulk-modulus pressure derivative B_0 of solid materials with complex crystal structures is presented. The explicit and exact results presented here permit a multidimensional polynomial fit of the total energy as a function of all relevant structure parameters to simultaneously determine the equilibrium configuration and the elastic properties. The method allows for inclusion of general (internal) structure parameters, e.g., bond lengths and angles within the unit cell, on an equal footing with the unit-cell lattice parameters. The method is illustrated by the calculation of B_0 and B_0 for a few selected materials with multiple structure parameters for which data is obtained by using first-principles density functional theory.
Perpendicular magnetization is essential for high-density memory application using magnetic materials. High-spin polarization of conduction electrons is also required for realizing large electric signals from spin-dependent transport phenomena. Heusler alloy is a well-known material class showing the half-metallic electronic structure. However, its cubic lattice nature favors in-plane magnetization and thus minimizes the perpendicular magnetic anisotropy (PMA), in general. This study focuses on an inverse-type Heusler alloy, Mn$_{2-delta}$CoGa$_{1+delta}$ (MCG) with a small off-stoichiometry ($delta$) , which is expected to be a half-metallic material. We observed relatively large uniaxial magnetocrystalline anisotropy energy ($K_mathrm{u}$) of the order of 10$^5$ J/m$^3$ at room temperature in MCG films with a small tetragonal distortion of a few percent. A positive correlation was confirmed between the $c/a$ ratio of lattice constants and $K_mathrm{u}$. Imaging of magnetic domains using Kerr microscopy clearly demonstrated a change in the domain patterns along with $K_mathrm{u}$. X-ray magnetic circular dichroism (XMCD) was employed using synchrotron radiation soft x-ray beam to get insight into the origin for PMA. Negligible angular variation of orbital magnetic moment ($Delta m_mathrm{orb}$) evaluated using the XMCD spectra suggested a minor role of the so-called Brunos term to $K_mathrm{u}$. Our first principles calculation reasonably explained the small $Delta m_mathrm{orb}$ and the positive correlation between the $c/a$ ratio and $K_mathrm{u}$. The origin of the magnetocrystalline anisotropy was discussed based on the second-order perturbation theory in terms of the spin-orbit coupling, claiming that the mixing of the occupied $uparrow$- and the unoccupied $downarrow$-spin states is responsible for the PMA of the MCG films.
The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ crystals and find that around 20 K, it peaks to a value as high as 5,000 WK$^{-1}$m$^{-1}$, comparable to the peak thermal conductivity in silicon and exceeded only by a handful of insulators. The amplitude of the peak drastically decreases in presence of a type of disorder, which does not simply correlate with the density of mobile electrons. Annealing enhances the ceiling of the phonon mean free path. Samples with the highest thermal conductivity are those annealed in the presence of hydrogen. Above 100 K, thermal conductivity becomes sample independent. In this intrinsic regime, dominated by phonon-phonon scattering, the magnitude of thermal diffusivity, $D$ becomes comparable to many other oxides, and its temperature dependence evolves towards $T^{-1}$. The ratio of $D$ to the square of sound velocity yields a scattering time which obeys the expected scaling with the Planckian time.
We present a theoretical model of the electronic structure of delta-Pu that is consistent with many of the electronic structure related properties of this complex metal. In particular we show that the theory is capable of reproducing the valence band photoelectron spectrum of delta-Pu. We report new experimental photoelectron spectra at several photon energies and present evidence that the electronic structure of delta-Pu is unique among the elements, involving a 5f shell with four 5f electrons in a localized multiplet, hybridizing with valence states, and approximately one 5f electron forming a completely delocalized band state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا