Do you want to publish a course? Click here

Thermal conductivity of bulk In$_{2}$O$_{3}$ single crystals

113   0   0.0 ( 0 )
 Added by Liangcai Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transparent semiconductor In$_{2}$O$_{3}$ is a technologically important material. It combines optical transparency in the visible frequency range and sizeable electric conductivity. We present a study of thermal conductivity of In$_{2}$O$_{3}$ crystals and find that around 20 K, it peaks to a value as high as 5,000 WK$^{-1}$m$^{-1}$, comparable to the peak thermal conductivity in silicon and exceeded only by a handful of insulators. The amplitude of the peak drastically decreases in presence of a type of disorder, which does not simply correlate with the density of mobile electrons. Annealing enhances the ceiling of the phonon mean free path. Samples with the highest thermal conductivity are those annealed in the presence of hydrogen. Above 100 K, thermal conductivity becomes sample independent. In this intrinsic regime, dominated by phonon-phonon scattering, the magnitude of thermal diffusivity, $D$ becomes comparable to many other oxides, and its temperature dependence evolves towards $T^{-1}$. The ratio of $D$ to the square of sound velocity yields a scattering time which obeys the expected scaling with the Planckian time.

rate research

Read More

A comprehensive bulk and surface investigation of high-quality In$_2$O$_3$(001) single crystals is reported. The transparent-yellow, cube-shaped single crystals were grown using the flux method. Inductively coupled plasma mass spectrometry (ICP-MS) reveals small residues of Pb, Mg, and Pt in the crystals. Four-point-probe measurements show a resistivity of 2.0 $pm$ 0.5 $times$ 10$^5$ {Omega} cm, which translates into a carrier concentration of $approx$10$^{12}$ cm$^{-3}$. The results from x-ray diffraction (XRD) measurements revise the lattice constant to 10.1150(5) {AA} from the previously accepted value of 10.117 {AA}. Scanning tunneling microscopy (STM) images of a reduced (sputtered/annealed) and oxidized (exposure to atomic oxygen at 300 {deg}C) surface show a step height of 5 {AA}, which indicates a preference for one type of surface termination. The surfaces stay flat without any evidence for macroscopic faceting under any of these preparation conditions. A combination of low-energy ion scattering (LEIS) and atomically resolved STM indicates an indium-terminated surface with small islands of 2.5 {AA} height under reducing conditions, with a surface structure corresponding to a strongly distorted indium lattice. Scanning tunneling spectroscopy (STS) reveals a pronounced surface state at the Fermi level ($E_F$). Photoelectron spectroscopy (PES) shows additional, deep-lying band gap states, which can be removed by exposure of the surface to atomic oxygen. Oxidation also results in a shoulder at the O 1s core level at a higher binding energy, possibly indicative of a surface peroxide species. A downward band bending of 0.4 eV is observed for the reduced surface, while the band bending of the oxidized surface is of the order of 0.1 eV or less.
Significant differences exist among literature for thermal conductivity of various systems computed using molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity, have been found. Using GaN as an example case and the direct non-equilibrium method, extensive molecular dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing longer time averages using properly selected systems over a range of sample lengths. If the errors in the conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte-Carlo approach developed here, we have determined the probability distributions for the bulk thermal conductivities obtained using the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For the extremely accurate results presented here, we predict a [0001] GaN thermal conductivity of 185 $rm{W/K cdot m}$ at 300 K, 102 $rm{W/K cdot m}$ at 500 K, and 74 $rm{W/K cdot m}$ at 800 K. Using the insights obtained in the work, we have achieved a corresponding error level (standard deviation) for the bulk (infinite sample length) GaN thermal conductivity of less than 10 $rm{W/K cdot m}$, 5 $rm{W/K cdot m}$, and 15 $rm{W/K cdot m}$ at 300 K, 500 K, and 800 K respectively.
We report a study of magnetism and magnetic transitions of hexagonal ErMnO$_3$ single crystals by magnetization, specific heat and heat transport measurements. Magnetization data show that the $c$-axis magnetic field induces three magnetic transitions at 0.8, 12 and 28 T. The specific heat shows a peak at 2.2 K, which is due to a magnetic transition of Er$^{3+}$ moments. For low-$T$ thermal conductivity ($kappa$), a clear dip-like feature appears in $kappa(H)$ isotherm at 1--1.25 T for $H parallel ab$; while in the case of $H parallel c$, a step-like increase is observed at 0.5--0.8 T. The transition fields in $kappa(H)$ are in good agreement with those obtained from magnetization, and the anomaly of $kappa$ can be understood by a spin-phonon scattering scenario. The natures of magnetic structures and corresponding field-induced transitions at low temperatures are discussed.
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are based on an iterative solution of the phonon Boltzmann Transport Equation and rely on interatomic force constants computed within an efficient second-principles density functional theory scheme. We also characterize the hysteresis cycle of the thermal conductivity in presence of an applied electric field and show that the response time would be limited by speed of the ferroelectric switch itself and thus can operate in the high-frequency regime.
Thermal conductivity is a fundamental material property but challenging to predict, with less than 5% out of about $10^5$ synthesized inorganic materials being documented. In this work, we extract the structural chemistry that governs lattice thermal conductivity, by combining graph neural networks and random forest approaches. We show that both mean and variation of unit-cell configurational properties, such as atomic volume and bond length, are the most important features, followed by mass and elemental electronegativity. We chart the structural chemistry of lattice thermal conductivity into extended van-Arkel triangles, and predict the thermal conductivity of all known inorganic materials in the Inorganic Crystal Structure Database. For the latter, we develop a transfer learning framework extendable for other applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا