Do you want to publish a course? Click here

Supershear Tsunamis and insights from the $M_{w}$ 7.5 Palu Earthquake

56   0   0.0 ( 0 )
 Added by Harsha Bhat
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hazardous tsunamis are known to be generated predominantly at subduction zones by large earthquakes on dip (vertical)-slip faults. However, a moment magnitude ($M_{w}$) 7.5 earthquake on a strike (lateral)-slip fault in Sulawesi (Indonesia) in 2018 generated a tsunami that devastated the city of Palu. The mechanism by which this large tsunami originated from a strike-slip earthquake has been debated. Here we present near-field ground motion data from a GPS station that confirms that the 2018 Palu earthquake attained supershear speed, i.e., a rupture speed greater than the speed of shear waves in the host medium. We study the effect of this supershear rupture on tsunami generation by coupling the ground motion to a 1D non-linear shallow-water wave model that accounts for both the time-dependent bathymetric displacement and velocity. With the local bathymetric profile of the Palu bay around a tidal gauge, we find that these simulations reproduce the tsunami motions measured by the gauge, with only minimal tuning of parameters. We conclude that Mach (shock) fronts, generated by the supershear speed of the earthquake, interacted with the bathymetry and contributed to the tsunami. This suggests that rupture speed should be considered in tsunami hazard assessments.



rate research

Read More

We demonstrate the efficacy of a Bayesian statistical inversion framework for reconstructing the likely characteristics of large pre-instrumentation earthquakes from historical records of tsunami observations. Our framework is designed and implemented for the estimation of the location and magnitude of seismic events from anecdotal accounts of tsunamis including shoreline wave arrival times, heights, and inundation lengths over a variety of spatially separated observation locations. As an initial test case we use our framework to reconstruct the great 1852 earthquake and tsunami of eastern Indonesia. Relying on the assumption that these observations were produced by a subducting thrust event, the posterior distribution indicates that the observables were the result of a massive mega-thrust event with magnitude near 8.8 Mw and a likely rupture zone in the north-eastern Banda arc. The distribution of predicted epicentral locations overlaps with the largest major seismic gap in the region as indicated by instrumentally recorded seismic events. These results provide a geologic and seismic context for hazard risk assessment in coastal communities experiencing growing population and urbanization in Indonesia. In addition, the methodology demonstrated here highlights the potential for applying a Bayesian approach to enhance understanding of the seismic history of other subduction zones around the world.
4D acoustic imaging via an array of 32 sources / 32 receivers is used to monitor hydraulic fracture propagating in a 250~mm cubic specimen under a true-triaxial state of stress. We present a method based on the arrivals of diffracted waves to reconstruct the fracture geometry (and fluid front when distinct from the fracture front). Using Bayesian model selection, we rank different possible fracture geometries (radial, elliptical, tilted or not) and estimate model error. The imaging is repeated every 4 seconds and provide a quantitative measurement of the growth of these low velocity fractures. We test the proposed method on two experiments performed in two different rocks (marble and gabbro) under experimental conditions characteristic respectively of the fluid lag-viscosity (marble) and toughness (gabbro) dominated hydraulic fracture propagation regimes. In both experiments, about 150 to 200 source-receiver combinations exhibit clear diffracted wave arrivals. The results of the inversion indicate a radial geometry evolving slightly into an ellipse towards the end of the experiment when the fractures feel the specimen boundaries. The estimated modelling error with all models is of the order of the wave arrival picking error. Posterior estimates indicate an uncertainty of the order of a millimeter on the fracture front location for a given acquisition sequence. The reconstructed fracture evolution from diffracted waves is shown to be consistent with the analysis of $90^{circ}$ incidence transmitted waves across the growing fracture.
We present a highly scalable 3D fully-coupled Earth & ocean model of earthquake rupture and tsunami generation. We model seismic, acoustic and surface gravity wave propagation in elastic (Earth) and acoustic (ocean) materials sourced by physics-based non-linear earthquake dynamic rupture. Complicated geometries, including high-resolution bathymetry, coastlines and segmented earthquake faults are discretized by adaptive unstructured tetrahedral meshes. A Discontinuous Galerkin discretization with ADER local time-stepping (ADER-DG) yields petascale computational efficiency and high-order accuracy in time and space. We compare the 3D fully-coupled approach to a benchmark problem for 3D-2D linked models that use 2D shallow-water modeling. We present a large-scale fully-coupled model of the 2018 Sulawesi events that links the dynamics from supershear earthquake faulting to elastic and acoustic waves in Earth and ocean to tsunami gravity wave propagation in the narrow Palu Bay. And we demonstrate scalability and performance of the MPI+OpenMP parallelization on three petascale supercomputers.
A new thixotropic model is developed integrating the Papanastasiou-Bingham model with thixotropy equations to simulate the flow behaviour of Tremie Concrete in the Material Point Method framework. The effect of thixotropy on the rheological behaviour of fresh concrete is investigated by comparing field measurements with numerical simulations. The comparison yields new insights into a critical and often overlooked behaviour of concrete. A parametric study is performed to understand the effect of model parameters and rest-time on the shear stress response of fresh concrete. The Material Point Method with the Papanastasiou-Bingham model reproduces slump-flow measurements observed in the field. The novel model revealed a decline in concrete workability during the Slump-flow test after a period of rest due to thixotropy, which the physical version of the test fails to capture. This reduction in workability significantly affects the flow behaviour and the effective use of fresh concrete in construction operation.
An article for the Springer Encyclopedia of Complexity and System Science
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا