Do you want to publish a course? Click here

Methodological reconstruction of historical seismic events from anecdotal accounts of destructive tsunamis: a case study for the great 1852 Banda arc mega-thrust earthquake and tsunami

75   0   0.0 ( 0 )
 Added by Jared Whitehead
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the efficacy of a Bayesian statistical inversion framework for reconstructing the likely characteristics of large pre-instrumentation earthquakes from historical records of tsunami observations. Our framework is designed and implemented for the estimation of the location and magnitude of seismic events from anecdotal accounts of tsunamis including shoreline wave arrival times, heights, and inundation lengths over a variety of spatially separated observation locations. As an initial test case we use our framework to reconstruct the great 1852 earthquake and tsunami of eastern Indonesia. Relying on the assumption that these observations were produced by a subducting thrust event, the posterior distribution indicates that the observables were the result of a massive mega-thrust event with magnitude near 8.8 Mw and a likely rupture zone in the north-eastern Banda arc. The distribution of predicted epicentral locations overlaps with the largest major seismic gap in the region as indicated by instrumentally recorded seismic events. These results provide a geologic and seismic context for hazard risk assessment in coastal communities experiencing growing population and urbanization in Indonesia. In addition, the methodology demonstrated here highlights the potential for applying a Bayesian approach to enhance understanding of the seismic history of other subduction zones around the world.



rate research

Read More

Hazardous tsunamis are known to be generated predominantly at subduction zones by large earthquakes on dip (vertical)-slip faults. However, a moment magnitude ($M_{w}$) 7.5 earthquake on a strike (lateral)-slip fault in Sulawesi (Indonesia) in 2018 generated a tsunami that devastated the city of Palu. The mechanism by which this large tsunami originated from a strike-slip earthquake has been debated. Here we present near-field ground motion data from a GPS station that confirms that the 2018 Palu earthquake attained supershear speed, i.e., a rupture speed greater than the speed of shear waves in the host medium. We study the effect of this supershear rupture on tsunami generation by coupling the ground motion to a 1D non-linear shallow-water wave model that accounts for both the time-dependent bathymetric displacement and velocity. With the local bathymetric profile of the Palu bay around a tidal gauge, we find that these simulations reproduce the tsunami motions measured by the gauge, with only minimal tuning of parameters. We conclude that Mach (shock) fronts, generated by the supershear speed of the earthquake, interacted with the bathymetry and contributed to the tsunami. This suggests that rupture speed should be considered in tsunami hazard assessments.
In line of the intermediate-term monitoring of seismic activity aimed at prediction of the world largest earthquakes the seismic dynamics of the Earths lithosphere is analysed as a single whole, which is the ultimate scale of the complex hierarchical non-linear system. The present study demonstrates that the lithosphere does behave, at least in intermediate-term scale, as non-linear dynamic system that reveals classical symptoms of instability at the approach of catastrophe, i.e., mega-earthquake. These are: (i) transformation of magnitude distribution, (ii) spatial redistribution of seismic activity, (iii) rise and acceleration of activity, (iv) change of dependencies across magnitudes of different types, and other patterns of collective behaviour. The observed global scale seismic behaviour implies the state of criticality of the Earth lithosphere in the last decade.
63 - Rong Qiang Wei 2021
We present a method for locating the seismic event epicenters without assuming an Earth model of the seismic velocity structure, based on the linear relationship between $log R$ and $log t$ (where $R$ is the radius of spherical P wave propagated outwards from the hypocenter, $t$ is the travle-time of the P wave). This relationship is derived from the dimensional analysis and a lot of theoretical or real seismic data, in which the earthquake can be considered to be a point source. Application to 1209 events occurred from 2014 to 2017 in the IASPEI Ground Truth (GT) reference events list shows that our method can locate the correct seismic event epicenters in a simple way. $sim 97.2$ % of seismic epicenters are located with both longitude and latitude errors $in[-0.1^circ, +0.1^circ]$. This ratio can increase if with a finer search grid. As a direct and global-search location, this method may be useful in obtaining the earthquake epicenters occurred in the areas where the seismic velocity structure is poorly known, the starting points or the constraints for other location methods.
We base our study on the statistical analysis of the Rigan earthquake 2010 December 20, which consists of estimating the earthquake network by means of virtual seismometer technique, and also considering the avalanche-type dynamics on top of this complex network.The virtual seismometer complex network shows power-law degree distribution with the exponent $gamma=2.3pm 0.2$. Our findings show that the seismic activity is strongly intermittent, and have a textit{cyclic shape} as is seen in the natural situations, which is main finding of this study. The branching ratio inside and between avalanches reveal that the system is at (or more precisely close to) the critical point with power-law behavior for the distribution function of the size and the mass and the duration of the avalanches, and with some scaling relations between these quantities. The critical exponent of the size of avalanches is $tau_S=1.45pm 0.02$. We find a considerable correlation between the dynamical Green function and the nodes centralities.
Plate motions are governed by equilibrium between basal and edge forces. Great earthquakes may induce differential static stress changes across tectonic plates, enabling a new equilibrium state. Here we consider the torque balance for idealized circular plates and find a simple scalar relationship for changes in relative plate speed as a function of its size, upper mantle viscosity, and coseismic stress changes. Applied to Japan, the 2011 $mathrm{M}_{mathrm{W}}=9.0$ Tohoku earthquake generated coseismic stresses of $10^2-10^5$~Pa that could have induced changes in motion of small (radius $sim100$~km) crustal blocks within Honshu. Analysis of time-dependent GPS velocities, with corrections for earthquake cycle effects, reveals that plate speeds may have changed by up to $sim3$ mm/yr between $sim3.75$-year epochs bracketing this earthquake, consistent with an upper mantle viscosity of $sim 5times10^{18}$Pa$cdot$s, suggesting that great earthquakes may modulate motions of proximal crustal blocks at frequencies as high as $10^-8$~Hz.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا