No Arabic abstract
This paper considers the design of beamforming for orthogonal time frequency space modulation assisted non-orthogonal multiple access (OTFS-NOMA) networks, in which a high-mobility user is sharing the spectrum with multiple low-mobility NOMA users. In particular, the beamforming design is formulated as an optimization problem whose objective is to maximize the low-mobility NOMA users data rates while guaranteeing that the high-mobility users targeted data rate can be met. Both the cases with and without channel state information errors are considered, where low-complexity solutions are developed by applying successive convex approximation and semidefinite relaxation. Simulation results are also provided to show that the use of the proposed beamforming schemes can yield a significant performance gain over random beamforming.
In this paper, we investigate the impacts of transmitter and receiver windows on orthogonal time-frequency space (OTFS) modulation and propose a window design to improve the OTFS channel estimation performance. Assuming ideal pulse shaping filters at the transceiver, we first identify the role of window in effective channel and the reduced channel sparsity with conventional rectangular window. Then, we characterize the impacts of windowing on the effective channel estimation performance for OTFS modulation. Based on the revealed insights, we propose to apply a Dolph-Chebyshev (DC) window at either the transmitter or the receiver to effectively enhance the sparsity of the effective channel. As such, the channel spread due to the fractional Doppler is significantly reduced, which leads to a lower error floor in channel estimation compared with that of the rectangular window. Simulation results verify the accuracy of the obtained analytical results and confirm the superiority of the proposed window designs in improving the channel estimation performance over the conventional rectangular or Sine windows.
We investigate a coded uplink non-orthogonal multiple access (NOMA) configuration in which groups of co-channel users are modulated in accordance with orthogonal time frequency space (OTFS). We take advantage of OTFS characteristics to achieve NOMA spectrum sharing in the delay-Doppler domain between stationary and mobile users. We develop an efficient iterative turbo receiver based on the principle of successive interference cancellation (SIC) to overcome the co-channel interference (CCI). We propose two turbo detector algorithms: orthogonal approximate message passing with linear minimum mean squared error (OAMP-LMMSE) and Gaussian approximate message passing with expectation propagation (GAMP-EP). The interactive OAMP-LMMSE detector and GAMP-EP detector are respectively assigned for the reception of the stationary and mobile users. We analyze the convergence performance of our proposed iterative SIC turbo receiver by utilizing a customized extrinsic information transfer (EXIT) chart and simplify the corresponding detector algorithms to further reduce receiver complexity. Our proposed iterative SIC turbo receiver demonstrates performance improvement over existing receivers and robustness against imperfect SIC process and channel state information uncertainty.
The integration of non-orthogonal multiple access in millimeter-Wave communications (mmWave-NOMA) can significantly improve the spectrum efficiency and increase the number of users in the fifth-generation (5G) mobile communication. In this paper we consider a downlink mmWave-NOMA cellular system, where the base station is mounted with an analog beamforming phased array, and multiple users are served in the same time-frequency resource block. To guarantee user fairness, we formulate a joint beamforming and power allocation problem to maximize the minimal achievable rate among the users, i.e., we adopt the max-min fairness. As the problem is difficult to solve due to the non-convex formulation and high dimension of the optimization variables, we propose a sub-optimal solution, which makes use of the spatial sparsity in the angle domain of the mmWave channel. In the solution, the closed-form optimal power allocation is obtained first, which reduces the joint optimization problem into an equivalent beamforming problem. Then an appropriate beamforming vector is designed. Simulation results show that the proposed solution can achieve a near-upper-bound performance in terms of achievable rate, which is significantly better than that of the conventional mmWave orthogonal multiple access (mmWave-OMA) system.
High sidelobe level and direction of arrival (DOA) estimation sensitivity are two major disadvantages of the Capon beamforming. To deal with these problems, this paper gives an overview of a series of robust Capon beamforming methods via shaping beam pattern, including sparse Capon beamforming, weighted sparse Capon beamforming, mixed norm based Capon beamforming, total variation minimization based Capon beamforming, mainlobe-to-sidelobe power ratio maximization based Capon beamforming. With these additional structure-inducing constraints, the sidelobe is suppressed, and the robustness against DOA mismatch is improved too. Simulations show that the obtained beamformers outperform the standard Capon beamformer.
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over the IRS reflecting elements due to the limited training with discrete phase shifts, which degrade the data transmission rate and reliability. In this paper, we focus on investigating the effect of CSI errors to the outage performance in an IRS-aided multiuser downlink communication system. Specifically, we aim to jointly optimize the active transmit precoding vectors at the access point (AP) and passive discrete phase shifts at the IRS to minimize the APs transmit power, subject to the constraints on the maximum CSI-error induced outage probability for the users. First, we consider the single-user case and derive the users outage probability in terms of the mean signal power (MSP) and variance of the received signal at the user. Since there is a trade-off in tuning these two parameters to minimize the outage probability, we propose to maximize their weighted sum with the optimal weight found by one-dimensional search. Then, for the general multiuser case, since the users outage probabilities are difficult to obtain in closed-form due to the inter-user interference, we propose a novel constrained stochastic successive convex approximation (CSSCA) algorithm, which replaces the non-convex outage probability constraints with properly designed convex surrogate approximations. Simulation results verify the effectiveness of the proposed robust beamfoming algorithms and show their significant performance improvement over various benchmark schemes.