No Arabic abstract
In this paper, we investigate the impacts of transmitter and receiver windows on orthogonal time-frequency space (OTFS) modulation and propose a window design to improve the OTFS channel estimation performance. Assuming ideal pulse shaping filters at the transceiver, we first identify the role of window in effective channel and the reduced channel sparsity with conventional rectangular window. Then, we characterize the impacts of windowing on the effective channel estimation performance for OTFS modulation. Based on the revealed insights, we propose to apply a Dolph-Chebyshev (DC) window at either the transmitter or the receiver to effectively enhance the sparsity of the effective channel. As such, the channel spread due to the fractional Doppler is significantly reduced, which leads to a lower error floor in channel estimation compared with that of the rectangular window. Simulation results verify the accuracy of the obtained analytical results and confirm the superiority of the proposed window designs in improving the channel estimation performance over the conventional rectangular or Sine windows.
Although the combination of the orthogonal time frequency space (OTFS) modulation and the massive multiple-input multiple-output (MIMO) technology can make communication systems perform better in high-mobility scenarios, there are still many challenges in downlink channel estimation owing to inaccurate modeling and high pilot overhead in practical systems. In this paper, we propose a channel state information (CSI) acquisition scheme for downlink massive MIMO-OTFS in presence of the fractional Doppler, including deterministic pilot design and channel estimation algorithm. First, we analyze the input-output relationship of the single-input single-output (SISO) OTFS based on the orthogonal frequency division multiplexing (OFDM) modem and extend it to massive MIMO-OTFS. Moreover, we formulate an accurate model for the practical system in which the fractional Doppler is considered and the influence of subpaths is revealed. A deterministic pilot design is then proposed based on the model and the structure of the pilot matrix to reduce pilot overhead and save memory consumption. Since channel geometry changes very slowly relative to the communication timescale, we put forward a modified sensing matrix based channel estimation (MSMCE) algorithm to acquire the downlink CSI. Simulation results demonstrate that the proposed downlink CSI acquisition scheme has significant advantages over traditional algorithms.
This paper proposes an off-grid channel estimation scheme for orthogonal time-frequency space (OTFS) systems adopting the sparse Bayesian learning (SBL) framework. To avoid channel spreading caused by the fractional delay and Doppler shifts and to fully exploit the channel sparsity in the delay-Doppler (DD) domain, we estimate the original DD domain channel response rather than the effective DD domain channel response as commonly adopted in the literature. OTFS channel estimation is first formulated as a one-dimensional (1D) off-grid sparse signal recovery (SSR) problem based on a virtual sampling grid defined in the DD space, where the on-grid and off-grid components of the delay and Doppler shifts are separated for estimation. In particular, the on-grid components of the delay and Doppler shifts are jointly determined by the entry indices with significant values in the recovered sparse vector. Then, the corresponding off-grid components are modeled as hyper-parameters in the proposed SBL framework, which can be estimated via the expectation-maximization method. To strike a balance between channel estimation performance and computational complexity, we further propose a two-dimensional (2D) off-grid SSR problem via decoupling the delay and Doppler shift estimations. In our developed 1D and 2D off-grid SBL-based channel estimation algorithms, the hyper-parameters are updated alternatively for computing the conditional posterior distribution of channels, which can be exploited to reconstruct the effective DD domain channel. Compared with the 1D method, the proposed 2D method enjoys a much lower computational complexity while only suffers slight performance degradation. Simulation results verify the superior performance of the proposed channel estimation schemes over state-of-the-art schemes.
Orthogonal time frequency space (OTFS) modulation has attracted substantial attention recently due to its great potential of providing reliable communications in high-mobility scenarios. In this paper, we propose a novel hybrid signal detection algorithm for OTFS modulation. By characterizing the input-output relationship of OTFS modulation, we derive the near-optimal symbol-wise maximum a posteriori (MAP) detection algorithm for OTFS modulation, which aims to extract the information of each transmitted symbol based on the corresponding related received symbols. Furthermore, in order to reduce the detection complexity, we propose a partitioning rule that separates the related received symbols into two subsets for detecting each transmitted symbol, according to the corresponding path gains. We then introduce a hybrid detection algorithm to exploit the power discrepancy of each subset, where the MAP detection is applied to the subset with larger channel gains, while the parallel interference cancellation (PIC) detection is applied to the subset with smaller channel gains. Simulation results show that the proposed algorithms can not only approach the performance of the near-optimal symbol-wise MAP algorithms, but also offer a substantial performance gain compared with existing algorithms.
Orthogonal time frequency space (OTFS) modulation is a recently developed multi-carrier multi-slot transmission scheme for wireless communications in high-mobility environments. In this paper, the error performance of coded OTFS modulation over high-mobility channels is investigated. We start from the study of conditional pairwise-error probability (PEP) of the OTFS scheme, based on which its performance upper bound of the coded OTFS system is derived. Then, we show that the coding improvement for OTFS systems depends on the squared Euclidean distance among codeword pairs and the number of independent resolvable paths of the channel. More importantly, we show that there exists a fundamental trade-off between the coding gain and the diversity gain for OTFS systems, i.e., the diversity gain of OTFS systems improves with the number of resolvable paths, while the coding gain declines. Furthermore, based on our analysis, the impact of channel coding parameters on the performance of the coded OTFS systems is unveiled. The error performance of various coded OTFS systems over high-mobility channels is then evaluated. Simulation results demonstrate a significant performance improvement for OTFS modulation over the conventional orthogonal frequency division multiplexing (OFDM) modulation over high-mobility channels. Analytical results and the effectiveness of the proposed code design are also verified by simulations with the application of both classical and modern codes for OTFS systems.
Sampling above the Nyquist rate is at the heart of sigma-delta modulation, where the increase in sampling rate is translated to a reduction in the overall (mean-squared-error) reconstruction distortion. This is attained by using a feedback filter at the encoder, in conjunction with a low-pass filter at the decoder. The goal of this work is to characterize the optimal trade-off between the per-sample quantization rate and the resulting mean-squared-error distortion, under various restrictions on the feedback filter. To this end, we establish a duality relation between the performance of sigma-delta modulation, and that of differential pulse-code modulation when applied to (discrete-time) band-limited inputs. As the optimal trade-off for the latter scheme is fully understood, the full characterization for sigma-delta modulation, as well as the optimal feedback filters, immediately follow.